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NOTES ON WEAKLY CYCLIC Z-SYMMETRIC MANIFOLDS

JAEMAN Kim

ABSTRACT. In this paper, we study some geometric structures of a weakly
cyclic Z-symmetric manifold (briefly, [WCZS],). More precisely, we
prove that a conformally flat [WCZS], satisfying certain conditions is
special conformally flat and hence the manifold can be isometrically im-
mersed in an Euclidean manifold E™t1 as a hypersurface if the manifold
is simply connected. Also we show that there exists a [WCZS]4 with one
parameter family of its associated 1-forms.

1. Introduction

As a natural generalization of the notion of a space of constant curvature,
the notion of a symmetric manifold was introduced by Cartan [5] who obtained
a classification of such a manifold. During the last six decades the notion of a
symmetric manifold was weakened by many authors in several ways to a dif-
ferent extent such as a conformally symmetric manifold by Chaki and Gupta
[8]; a recurrent manifold by Walker [18]; a conformally recurrent manifold by
Adati and Miyazawa [1]; a pseudo symmetric manifold by Chaki [6]; a weakly
symmetric manifold by Binh and Tamassy [3]; a pseudo Ricci symmetric mani-
fold by Chaki [7]; a weakly Ricci symmetric manifold by Binh and Tamassy [4];
a generalized pseudo Ricci symmetric manifold by Chaki and Koley [9]. As an
extending notion of a weakly Ricci symmetric manifold, Jana and Shaikh [13]
introduced the notion of a weakly cyclic Ricci symmetric manifold and studied
its several geometrical properties with some nontrivial examples. A Riemann-
ian manifold (M™, g) (n > 2) is said to be weakly cyclic Ricci symmetric if its
Ricei tensor r of type (0,2) satisfies the following relation:

(Vur)(V,W) + (Vyr)(W,U) + (Vwr)(U, V)
=A(U)r(V,W)+ B(V)r(W,U) + C(W)r(U,V),

where A, B, C' are 1-forms and V denotes the covariant differentiation with re-
spect to the metric tensor g. A (0,2) symmetric tensor Z is called a generalized
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Z-tensor if it satisfies the relation
(1.1) ZU,V) = (U, V) + 69(U, V),

where ¢ is an arbitrary function.

The tensor Z was introduced in [15] and used in [16] and [17]. The classical
Z-tensor is obtained with the choice ¢ = —%s, where s is the scalar curvature.
Hereafter we refer to the generalized Z-tensor simply as the Z-tensor. In par-
ticular, if the Z-tensor of a Riemannian manifold vanishes, then the manifold
is Einstein. In [14], Mantica and Molinari introduced a weakly Z-symmetric
manifold which is a generalization of the notion of a weakly Ricci symmetric
manifold, and studied its several geometric properties. A Riemannian manifold
(M™,g) (n > 2) is said to be weakly Z-symmetric if the Z-tensor fulfills the
following relation:

(1.2) (VuZ)(V,W) =AU)Z(V, W)+ B(V)Z(W,U) + C(W)Z(U,V),

where A, B, C are the associated 1-forms.

Also recently, De, Mantica and Suh [12] introduced the notion of a weakly
cyclic Z-symmetric manifold which is a generalization of the notion of a weakly
Z-symmetric manifold, and investigated its various properties.

More precisely, a Riemannian manifold (M™, g)(n > 2) is said to be weakly
cyclic Z-symmetric if its Z-tensor satisfies the condition

(VuZ)(V,W) + (Vv Z)(W,U) + (Vw Z)(U, V)
(1.3) = AU)Z(V, W)+ B(V)Z(W,U) + C(W)Z(U,V).

An n-dimensional manifold of this kind is denoted by [WCZS],,. It is worth to
note that [WCZS]4 space-times were investigated in [11]. The purpose of this
paper is to study a conformally flat [WCZS],, and provide a proper example
such as a [WCZS], with one parameter family of its associated 1-forms.

2. Main results

A Riemannian manifold (M™, g)(n > 2) is said to be quasi Einstein if there
exists a nonzero 1-form T associated with a unit vector field such that its Ricci
tensor satisfies the condition

T(Xv Y) = ag(X, Y) + bT(X)T(Y)a

where a, b are smooth functions.

At first, we can state the following Proposition which we need for the proofs
of main results in this section, and for the sake of completeness, we have pro-
vided the proof of this one which was already appeared in [12].

Proposition 2.1 ([12]). Let (M™,g) be a [WCZS],, with B—C # 0 in (1.3).

Then the manifold is quasi Finstein.
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Proof. Interchanging V, W in (1.3) and then subtracting the relation obtained
thus from (1.3), we have

0=(B-0O)(V)Z(W,U) - (B-C)W)Z(U,V).
Let us define D = B — C(3 0). Then the last relation reduces to

(2.4) D(WV)Z(W,U)=DW)Z(U,V).
Contracting (2.4) with respect to U and W, we get
(2.5) D(V)(s +ne) = Z(D*, V),

where DF is a vector field associated with the 1-form D, i.e., g(D*, V) = D(V).
On the other hand, if we replace V by DF in (2.4), we have

D(D*)Z(W,U) = D(W)Z(U, D),
which yields from (2.5)
(s +n¢)

2. Z =——>7>=DU)D = )T
(26)  2WW) = GEEDWIDIY) = (s +no)TWU)T(W),
where T(U) = mD(U).
Using (1.1) and (2.6), we obtain
(2.7) r(U,W) = (=¢)g(U,W) + (s + ng)T(U)T(W),
showing that the manifold is quasi Einstein. This completes the proof. ([

A vector field V is said to be a conformally killing vector field on a Rie-
mannian manifold (M™,g) (n > 2) if it satisfies the relation

Lvg = [y,
where f and £ denote a smooth function and Lie differentiation, respectively.

In particular, if f = 0, then the vector field V is said to be a Killing vector
field. We now prove the following theorem.

Theorem 2.2. Let (M",g) be a compact orientable [WCZS),, with B—C #0
in (1.3). If the associated vector field T* of 1-form T in (2.6) is conformally
Killing and the scalar curvature s of (M™, g) satisfies the condition s < (1—n)¢,
then the conformally Killing vector field T* is parallel.

Proof. Tt is known from [2,19] that for a vector field V' in a compact orientable
Riemannian manifold, the following inequality holds

(2:8) | vy = vvie -

and equality holds if and only if V is a conformally Killing vector field. Here
div denotes the divergence. If the associated vector field T% of 1-form T in
(2.6) is conformally Killing, then from (2.7) and (2.8) it follows that

—9
D72 (@ivV)2dM < 0

n

[ s+ (= 1)) = 19T = 2 (@iT 2la = o
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which yields from s < (1—n)¢ that VT* = 0 because the integral of non-positive
terms is zero only when each term is zero. This completes the proof. O

As a consequence we immediately obtain:

Corollary 2.3. Let (M™,g) be a compact orientable [WCZS),, with B—C # 0
n (1.3). If the associated vector field T* of 1-form T in (2.6) is Killing and
the scalar curvature s of (M™, g) satisfies the condition s < (1 —n)¢, then the
Killing vector field T* is parallel.

The conformal curvature tensor W of type (0,4) of a Riemannian manifold
(M"™, g)(n > 3) is defined by

W(X,Y,Z, V)= R(X,Y,Z, V) —

[r(Y, 2)9(X, V) —r(X, Z)g(Y, V)

n—2
+9(Y, Z)r(X, V) = g(X, Z)r(Y, V)]
(2.9) + m[gm 2)9(X, V) — g(X, Z)g(Y,V)].

A Riemannian manifold (M™, g)(n > 3) is said to be conformally flat if its con-
formal curvature tensor W vanishes. Also a Riemannian manifold (M™, g)(n >
3) is called a conformally flat [WCZ S|, if the manifold is a conformally flat and
weakly cyclic Z-symmetric manifold. Concerning a conformally flat [WCZS],,,
we have:

Theorem 2.4. Let (M™,g) be a conformally flat [WCZS],, with B—C #0
n (1.3). If the Z-tensor of (M™,g) has trace Z # 0 and ¢ = constant, then
the associated 1-form T in (2.7) is closed.

Proof. Differentiating (2.9) covariantly and then contracting the relation ob-
tained thus, we have

(divW)(X,Y, Z) = (divR)(X,Y, Z) [(Vxr)(Y, Z) = (Vyr)(X, Z)

-2
+ %ds(X)g(Y, Z) — %ds(Y)g(X, Z)]

1

Also it is well known that the relation
(divR)(X,Y,Z) = (Vx7)(Y, Z) — (Vyr)(X, Z)
holds. By virtue of the last relation and (2.10), we get

(@)(X, Y, 2) = "= [(Vxr)(Y, 2) - (Vyr)(X, 2)

(211) - S (s ()a(Y. 2) ~ ds(V)(X. 2))]
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which yields from conformal flatness that
(2.12)

(Vxr)(Y,Z2) = (Vyr)(X, Z) = (ds(X)g(Y, Z) — ds(Y)g(X, Z))].

1
2(n—1)
From (2.7) and (2.12), it follows that

—dop(X)g(Y, Z) + d(s + ng)(X)T(Y)T(2)

+ (s +n9)(VxT)(Y)T(Z) + (s + n)T(Y)(VxT)(Z)

+do(Y)g(X, Z) — d(s + no)(Y)T(X)T(Z2)

= (s + 1) (VyT)(X)T(Z) = (s + no) T(X)(Vy T)(Z)
(2.13) = ﬁ(ds(X)g(Y, Z)—ds(Y)g(X, Z)).

Considering ¢ = constant, we obtain

ds(X)T(Y)T(Z)+ (s +no)(VxT)(Y)T(Z)

+ (s +n9)T(Y)(VxT)(2)
—ds(Y)T(X)T(Z) ~ (s + ) (V¥ T)(X)T(2)
~ (s + ng)T(X)(Vy T)(2)
QU = e (d(X)g(Y. Z) —ds(V)e(X. 2).

Setting Z = T* in (2.14), we have
ds(X)T(Y) + (s +n)(VxT)(Y)
—ds(Y)T(X) = (s +n¢)(VyT)(X)
(215) = S (S OT(Y) — ds(Y)T(X).
On the other hand, setting Y = Z = ¢; in (2.13) and taking summation over
i=1,..., n, we have

— do(X)n + d(s +ne)(X) + dp(X) — d(s +n)(T*)T(X)

n

— (s +09) (Vs T)(X) = (s + nd)T(X)(D_(Ve, T)(e:)

(2.16) = ﬁ(ds()()n —ds(X)).

Again putting Y = Z = T* in (2.13), we obtain
—dp(X) +d(s +np)(X) + dp(THT(X) — d(s + ned)(THT(X)
— (s +n0)(Vr:T)(X)

(217) = ﬁ(ds(X) —ds(THT(X)).
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By virtue of the common term (s + n¢)(Vy:T)(X) in (2.16) and (2.17), we
have from (2.16) and (2.17)

n

(2 = n)d¢(X) — dp(THT(X) — (s + nd)T(X)(D_(Ve, T)(es))

i=1
n—2 1

(2.18) = ——ds(X) + mds(Tﬁ)T(X).

2(n—1)
Putting X = T*% in (2.18), we get

(1= m)dg(T¥) = s+ n6) (Y (Ve T)(ex)) = 5ds(T9)
which leads to )

(2.19) =(s+ne)T(X)(D (Ve T)(e:)) = (n—1)do(THT(X) + %dS(Tﬂ)T(X)-
i=1
Considering (2.18) and (2.19), we obtain
2(n7—11)ds(X) + ﬁ
It follows from ¢ = constant and (2.20) that
(2.21) ds(X) = ds(T*)T(X).
Taking account of (2.15) and (2.21), we have
(s +no)(VxT)(Y) = (VyT)(X)) =0,
which yields from s + n¢ # 0 that
(VxT)(Y) = (VyT)(X) =0,
showing that T is closed. This completes the proof. O

(2.20)  do(X) —dop(THT(X) = ds(THT(X).

Concerning a conformally flat [WCZS],, with constant scalar curvature, we
have the following results:

Lemma 2.5. Let (M™,g) be a conformally flat [WCZS],, with s = constant
and B — C # 0 in (1.3). If the Z-tensor of (M",g) has trace Z # 0 and ¢ =
constant, then for the vector field T* associated with 1-form T in (2.7), the
integral curve of T* is geodesic.

Proof. Taking account of (2.17) and s = constant, we get
2.22
(*dfb()X) +ndd(X) + dg(TH)T(X) — nd¢(TH)T(X) — (s + ne) (Vs T)(X) = 0,
which yields from ¢ = constant and trace Z # 0 that
(VT)(X)=0
or equivalently
Vs TF =0,
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showing that the integral curve of T*% is geodesic. This completes the proof. [J
As a consequence we have:

Theorem 2.6. Let (M™, g) be a conformally flat [WCZS],, with s = constant
and B —C # 0 in (1.3). If the Z-tensor of (M™,g) has trace Z # 0 and ¢ =
constant, then the vector field T* associated with 1-form T in (2.7) is parallel.

Proof. By virtue of trace Z # 0, s = constant and ¢ = constant, we obtain
from (2.13)

(2.23)

(VxT)Y)T(Z) + T(Y)(VxT)(Z) = (VyT)(X)T(Z) - T(X)(VyT)(Z) = 0.

Putting Y = T* in (2.23), we get
(VxT)(2) = (VT)NX)T(2) = T(X)(V1:T)(Z) = 0.

From Lemma 2.5, it follows that the last relation reduces to

(VxT)(Z) =0
or equivalently
VxT* =0,
showing that the vector field T* is parallel. This completes the proof. O

According to Chen and Yano [10], if a (0,2) tensor H defined by

221) H(X,Y) = ——r(X,Y) +

XY
n—2 9(X.Y)

s
2(n—1)(n —2)
is expressible in the form

2

H(X.Y) = =5 g(X.Y) + B(Xa)(Yo),

where a(> 0) and 8 are scalar functions, then the conformally flat manifold
with the above mentioned H is said to be special conformally flat. Now we are
in a position to state the following:

Theorem 2.7. Let (M™,g) be a conformally flat [WCZS],, with B—C #0
in (1.3). If the manifold has a nonconstant scalar curvature s and a constant
¢ in (1.1) satisfying the condition s < 2(1 — n), then the manifold is special
conformally flat.

Proof. By virtue of (2.7) and (2.24), we get
s+2(n—1)¢
2(n—1)(n —2)

According to s +2(n — 1)¢ < 0, we can define a scalar function a (> 0) such
as

s+ no
n—2

(2.25) H(X,Y)=(

)9(X,Y) = ( JT(X)T(Y).

s+2(n—1)¢

ot = (————
(2.26) (o3

) > 0.



234 J. KIM

Then we have from (2.26) and ¢ = constant

sty
20(Xa) = CERCEDL
which yields from (2.21)
_ —ds(THT(X)
(2.27) 20(Xa) = -Dn-2)

Hence from (2.27) and nonconstant s, it follows that
4o Xa)(Ya)(n —1)%(n —2)?
- (ds(T%))? ’

T(X)T(Y)

which yields from (2.26)

which leads to

s+ _ Al +19)(s+2n = 1)6) (Xa) (Ya)(n — 1)
~EEETE)T(Y) = )

(228) — B(Xa)(Ya),

where 3 = 4(s+nd)(s+2(n—1)¢)(n—1)

@s(Th)2 :
Therefore taking account of (2.25), (2.26) and (2.28), we obtain

H(X,)Y)= —%Qg(X, Y)+B8(Xa)(Ya),

showing that the manifold under consideration is special conformally flat. This
completes the proof. O

Also in [10] Chen and Yano showed that every simply connected and spe-
cial conformally flat manifold can be isometrically immersed in an Euclidean
manifold E"*! as a hypersurface. Therefore by virtue of Theorem 2.7, we can
state:

Corollary 2.8. Let (M", g) be a simply connected and conformally flat
(WCZS],, with B—C # 0 in (1.3). If the manifold has a nonconstant scalar
curvature s and a constant ¢ in (1.1) satisfying the condition s < 2(1 — n)®,
then the manifold is isometrically immersed in an FEuclidean E™ 1 as a hyper-
surface.

Now we show that there exists a [WCZS]4 with one parameter family of its
associated 1-forms.

Example 1 ([12]). Let (R}, g) be a Riemannian manifold given by

Ri = {(zl,xz,x?’,x4) |x4 >0}
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and
g = (a")3[(da)? + (da?)? + (dz®)?] + (da*)?.
This kind of metric was appeared in [12]. In the metric described as above, the

only nonvanishing components for the Christoffel symbols T'¥

ij» the curvature
tensors R;ji; and the Ricci tensors r;;, are

- 13, - 13

34 = @,
4 4 4 -2, 43
I'fy =T5 =153 = ?(x )%,
4 42
Ri221 = Ri331 = Raszzp = §(=’C )ER
-2
Rig41 = Rossz = R3guz = =
9(x*)s
2
T11 = T22 =T33 = 3($4)%7

T44 = 3(3074)2.
Now we define a scalar function ¢ in (1.1) as

1
(@)
Therefore the nonvanishing components of the Z-tensor Z;; and their covariant
derivatives Z;;.;, are

¢ =

5 1
( ) 11 22 33 3(1‘4)§ 44 3(134)2
—10 -2
2.30 Ziia = Zopa = Tggs = ———=, Dagg = ———.
( ) 1134 22;4 33;4 9(3:4)% 444 313

It is easy to see that the scalar curvature s of (Ri, g) is ﬁ.

Let us define the associated 1-forms A, B, C of (1.3) on (R%, g) as follows:
A, = ﬁ%) for i = 4 and 0 otherwise; B; = ﬁ’;) for i = 4 and 0 otherwise;

C; = g%gj)t for i = 4 and 0 otherwise. Here t € R.

In the manifold (R%,g), (1.3) reduces to the following equations:
(2.31) 214 + Ziay + Zana = AuZi + Bi1Z1a + Ci1 Zya,

(2.32) Zooa + Zoaso + Zago = AuZog + BaZoy + CoZys,
(2.33) Z33.4 + Zsays + Zaz.3 = AuZss + B3 Zzq + C3Z43,

(2.34) Zasa + Zaasa + Zaaa = AsZyg + BaZyy + CuZyy
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because for the other cases, the components of each term of (1.3) vanishes
identically. From (2.29), (2.30) and the definition of A, B, C, it follows that the
last equations hold. For instance, in case of (2.31),
—10
Zita+ Zigy + Zyy = ——
9(z*)3

and
-2 5

34 ) W ),
showing that (2.31) holds. By similar arguments, it can be shown that (2.32)
and (2.33) hold. In case of (2.34),

AsZi + B1Zia+ CiZa = (

-2
Zg4. Zaa. Zggq =3
4454 + Zaa;a + Zaaa (3(334)3)
and
-2 1 —t 1 —16+1 1

A4Z44+B4Z44+C4Z44:(?)(W)+(@)(3(lﬂ4)g)+( 34 )(3(:54)2)’

showing that (2.34) holds too. Hence the Riemannian manifold (R%,g) with
¢,A, B, C mentioned in the above is a [WCZS5],.
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