KYUNGPOOK Math. J. 59(2019), 537-562
https://doi.org/10.5666/KMJ.2019.59.3.537
pISSN 1225-6951 eISSN 0454-8124
(c) Kyungpook Mathematical Journal

η-Ricci Solitons in δ-Lorentzian Trans Sasakian Manifolds with a Semi-symmetric Metric Connection

Mohd Danish Siddiqi
Department of Mathematics, Jazan University, Faculty of Science, Jazan, Kingdom of Saudi Arabia
e-mails: anallintegral@gmail.com, msiddiqi@jazanu.edu.sa

Abstract. The aim of the present paper is to study the δ-Lorentzian trans-Sasakian manifold endowed with semi-symmetric metric connections admitting η-Ricci Solitons and Ricci Solitons. We find expressions for the curvature tensor, the Ricci curvature tensor and the scalar curvature tensor of δ-Lorentzian trans-Sasakian manifolds with a semi-symmetric-metric connection. Also, we discuses some results on quasi-projectively flat and ϕ-projectively flat manifolds endowed with a semi-symmetric-metric connection. It is shown that the manifold satisfying $\bar{R} . \bar{S}=0, \bar{P} . \bar{S}=0$ is an η-Einstein manifold. Moreover, we obtain the conditions for the δ-Lorentzian trans-Sasakian manifolds with a semi-symmetric-metric connection to be conformally flat and ξ-conformally flat.

1. Introduction

In 1924, the idea of a semi-symmetric linear connection on a differentiable manifold was introduced by A. Friedmann and J. A. Schouten [13]. In 1930, Bartolotti [5] gave a geometrical meaning of such a connection. In 1932, H. A. Hayden [16] defined and studied semi-symmetric metric connections. In 1970, K. Yano [42], started a systematic study of semi-symmetric metric connections in a Riemannian manifold and this was further studied by various authors such as Sharfuddin Ahmad and S. I. Hussain [31], M. M. Tripathi [34], I. E. Hirică and L. Nicolescu [17, 18], G. Pathak and U.C. De [27].

Let ∇ be a linear connection in an n-dimensional differentiable manifold M. The torsion tensor T and the curvature tensor R of ∇ are given respectively by

$$
\begin{gathered}
T(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y] \\
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z .
\end{gathered}
$$

Received February 14, 2018; revised August 29, 2018; accepted October 2, 2018. 2010 Mathematics Subject Classification: 53C15, 53C20, 53C25, 53C44..
Key words and phrases: η-Ricci Solitons, δ-Lorentzian trans-Sasakian manifold, semisymmetric metric connection, curvature tensors, Einstein manifold.

The connection ∇ is said to be symmetric if its torsion tensor T vanishes, otherwise it is non-symmetric. The connection ∇ is said to be a metric connection if there is a Riemannian metric g in M such that $\nabla g=0$, otherwise it is nonmetric. It is well known that a linear connection is symmetric and metric if it is the Levi-Civita connection.

A linear connection ∇ is said to be a semi-symmetric connection if its torsion tensor T is of the form

$$
T(X, Y)=\eta(Y) X-\eta(X) Y
$$

where η is a 1 -form. Semi-symmetric connections play an important role in the study of Riemannian manifolds. There are various physical problems involving the semi-symmetric metric connection. For example, if a man is moving on the surface of the earth always facing one definite point, say Jaruselam or Mekka or the North pole, then this displacement is semi-symmetric and metric [13].

The study of differentiable manifolds with Lorentizain metric is a natural and interesting topic in differential geometry. In 1996, Ikawa and Erdogan studied Lorentzian Sasakian manifold [20]. Also Lorentzian para contact manifolds were introduced by Matsumoto [24]. Trans Lorentzian para Sasakian manifolds have been used by Gill and Dube [15]. In [41], Yildiz et al. studied Lorentzian α Sasakian manifold and Lorentzian β-Kenmotsu manifold studied by Funda et al. in [40]. S. S. Pujar and V. J. Khairnar [28] have initiated the study of Lorentzian transSasakian manifolds and studied the some basic results with some of its properties. Earlier to this, S. S. Pujar [29] studied the δ-Lorentzian α-Sasakian manifolds and δ-Lorentzian β-Kenmotsu manifolds.

The study of manifolds with indefinite metrics is of interest from the standpoint of physics and relativity. In 1969, Takahashi [36] has introduced the notion of almost contact metric manifolds equipped with pseudo Riemannian metric. These indefinite almost contact metric manifolds and indefinite Sasakian manifolds are known as (ε)-almost contact metric manifolds. The concept of (ε)-Sasakian manifolds was initiated by Bejancu and Duggal [6] and further investigation was taken up by X. Xufeng and C. Xiaoli [39]. U. C. De and A. Sarkar [11] studied the notion of (ε)-Kenmotsu manifolds with indefinite metric. S. S. Shukla and D. D. Singh [32] extended with indefinite metric which are natural generalization of both (ε) Sasakian and (ε)-Kenmotsu manifolds called (ε)-trans-Sasakian manifolds. Siddiqi et al. [33] also studied some properties of Indefinite trans-Sasakian manifolds which is closely related to this topic.

The semi Riemannian manifolds has the index 1 and the structure vector field ξ is always a time like. This motivated Thripathi and others [34] to introduced (ε)-almost paracontact structure where the vector filed ξ is space like or time like according as $(\varepsilon)=1$ or $(\varepsilon)=-1$.

When M has a Lorentzian metric g, that is a symmetric non-degenerate (0,2) tensor field of index 1 , then M is called a Lorentzian manifold. Since the Lorentzian metric is of index 1 , Lorentzian manifold M has not only spacelike vector fields but
also timelike and lightlike vector fields. This difference with the Riemannian case gives interesting properties on the Lorentzian manifold. A differentiable manifold M has a Lorentzian metric if and only if M has a 1 -dimensional distribution. Hence odd dimensional manifold is able to have a Lorentzian metric. Inspired by the above results in 2014, S. M Bhati [8] introduced the notion of δ-Lorentzian trans Sasakian manifolds.

In 1982, R. S. Hamilton [19] said that the Rici solitons move under the Ricci flow simply by diffeomorphisms of the initial metric that is they are sationary points of the Ricci flow is given by

$$
\begin{equation*}
\frac{\partial g}{\partial t}=-2 R i c(g) . \tag{1.1}
\end{equation*}
$$

Definition 1.1. A Ricci soliton (g, V, λ) on a Riemannian manifold is defined by

$$
\begin{equation*}
L_{V} g+2 S+2 \lambda=0, \tag{1.2}
\end{equation*}
$$

where S is the Ricci tensor, L_{V} is the Lie derivative along the vector field V on M and λ is a real scalar. Ricci soliton is said to be shrinking, steady or expanding according as $\lambda<0, \lambda=0$ and $\lambda>0$, respectively.

In 1925, Levy [22] obtained the necessary and sufficient conditions for the existence of such tensors. later, R. Sharma [30] initiated the study of Ricci solitons in contact Riemannian geometry . After that, Tripathi [35], Nagaraja et al. [25] and others like C. S. Bagewadi et al. [4] extensively studied Ricci soliton. In 2009, J. T. Cho and M. Kimura [9] introduced the notion of η-Ricci solitons and gave a classification of real hypersurfaces in non-flat complex space forms admitting η Ricci solitons. Later η-Ricci solitons in (ε)-almost paracontact metric manifolds have been studied by A. M. Blaga et al. [3]. A. M. Blaga and various others authors also have been studied η-Ricci solitons in different structures (see [1, 2, 10]). Recently in 2017, K. Venu and G. Nagaraja [38] study the η-Ricci solitons in trans-Sasakian manifold. It is natural and interesting to study η-Ricci soliton in δ Lorentzian trans-Sasakian manifolds with a semi-symmetric metric connection not as real hypersurfaces of complex space forms but a special contact structures. In this paper we derive the condition for a 3 dimensional δ-Lorentzian Trans-Sasakian manifold with a semi-symmetric metric connection as an η-Ricci soliton and derive expression for the scalar curvature.

Moreover, in this paper we introduced the relation between metric connection and semi-symmetric metric connection in an n-dimensional δ-Lorentzian transSasakian manifolds. Also, we have proved some results on curvature tensor, scalar curvature, quasi projective flat, ϕ-projectively flat, $\bar{R} \cdot \bar{S}=0, \bar{P} . \bar{S}=0$, Weyl conformally flat, Weyl ξ-conformally flat receptively in n-dimensional δ-Lorentzian transSasakian manifolds with a semi-symmetric metric connection.

2. Preliminaries

Let M be a δ-almost contact metric manifold equipped with δ-almost contact metric structure $(\phi, \xi, \eta, g, \delta)[7]$ consisting of a $(1,1)$ tensor field ϕ, a vector field ξ, a 1-form η and an indefinite metric g such that

$$
\begin{gather*}
\phi^{2}=X+\eta(X) \xi, \quad \eta \circ \phi=0, \quad \phi \xi=0, \tag{2.1}\\
\eta(\xi)=-1, \tag{2.2}\\
g(\xi, \xi)=-\delta, \tag{2.3}\\
\eta(X)=\delta g(X, \xi), \tag{2.4}\\
g(\phi X, \phi Y)=g(X, Y)+\delta \eta(X) \eta(Y) \tag{2.5}
\end{gather*}
$$

for all $X, Y \in M$, where δ is such that $\delta^{2}=1$ so that $\delta= \pm 1$. The above structure $(\phi, \xi, \eta, g, \delta)$ on M is called the δ Lorentzian structure on M. If $\delta=1$ and this is usual Lorentzian structure [8] on M, the vector field ξ is the time like [42], that is M contains a time like vector field.

In [37], Tanno classified the connected almost contact metric manifold. For such a manifold the sectional curvature of the plane section containing ξ is constant, say c. He showed that they can be divided into three classes. (1) homogeneous normal contact Riemannian manifolds with $c>0$. Other two classes can be seen in Tanno [37].

In Grey and Harvella [14] classification of almost Hermitian manifolds, there appears a class W_{4} of Hermitian manifolds which are closely related to the conformal Kaehler manifolds. The class $C_{6} \oplus C_{5}$ [26] coincides with the class of trans-Sasakian structure of type (α, β). In fact, the local nature of the two sub classes, namely C_{6} and C_{5} of trans-Sasakian structures are characterized completely. An almost conatct metric structure [43] on M is called a trans-Sasakian (see [12, 23, 26]) if ($M \times R, J, G$) belongs to the class W_{4}, where J is the almost complex structure on $M \times R$ defined by

$$
J\left(X, f \frac{d}{d t}\right)=\left(\phi(X)-f \xi, \eta(X) \frac{d}{d t}\right)
$$

for all vector fields X on M and smooth functions f on $M \times R$ and G is the product metric on $M \times R$. This may be expressed by the condition

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=\alpha(g(X, Y) \xi-\eta(Y) X)+\beta(g(\phi X, Y) \xi-\eta(Y) \phi X) \tag{2.6}
\end{equation*}
$$

for any vector fields X and Y on M, ∇ denotes the Levi-Civita connection with respect to g, α and β are smooth functions on M. The existence of condition (2.3) is ensure by the above discussion.

With the above literature, we define the δ-Lorentzian trans-Sasakian manifolds [8] as follows:

Definition 2.1. A δ-Lorentzian manifold with structure ($\phi, \xi, \eta, g, \delta$) is said to be δ-Lorentzian trans-Sasakian manifold of type (α, β) if it satisfies the condition

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=\alpha(g(X, Y) \xi-\delta \eta(Y) X)+\beta(g(\phi X, Y) \xi-\delta \eta(Y) \phi X) \tag{2.7}
\end{equation*}
$$

for any vector fields X and Y on M.
If $\delta=1$, then the δ-Lorentzian trans Sasakian manifold is the usual Lorentzian trans Sasakian manifold of type (α, β) [26]. δ-Lorentzian trans Sasakian manifold of type $(0,0),(0, \beta)(\alpha, 0)$ are the Lorentzian cosymplectic, Lorentzian β-Kenmotsu and Lorentzian α-Sasakian manifolds respectively. In particular if $\alpha=1, \beta=0$ and $\alpha=0, \beta=1$, the δ-Lorentzian trans Sasakian manifolds reduces to δ-Lorentzian Sasakian and δ-Lorentzian Kenmotsu manifolds respectively [21].

Form (2.4), we have

$$
\begin{equation*}
\nabla_{X} \xi=\delta\{-\alpha \phi(X)-\beta(X+\eta(X) \xi\}, \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\nabla_{X} \eta\right) Y=\alpha g(\phi X, Y)+\beta[g(X, Y)+\delta \eta(X) \eta(Y)] . \tag{2.9}
\end{equation*}
$$

In a δ-Lorentzian trans Sasakian manifold M, we have the following relations:

$$
\begin{align*}
& R(X, Y) \xi=\left(\alpha^{2}+\beta^{2}\right) \tag{2.10}\\
&+ {[\eta(Y) X-\eta(X) Y]+2 \alpha \beta[\eta(Y) \phi X-\eta(X) \phi Y] } \\
& R(\xi, Y) X=\left.(X \alpha) \phi Y+(Y \beta) \phi^{2} X-(X \beta) \phi^{2}\right)[\delta g(X, Y) \xi-\eta(X) Y] \tag{2.11}\\
&+\delta(X \alpha) \phi Y+\delta g(\phi X, Y)(g r a d \alpha) \\
&+\delta(X \beta)(Y+\eta(Y) \xi)-\delta g(\phi Y, \phi X))(g r a d \beta) \\
&+2 \alpha \beta[\delta g(\phi X, Y) \xi+\eta(X) \phi Y] \\
& \eta(R(X, Y) Z)= \delta\left(\alpha^{2}+\beta^{2}\right)[\eta(X) g(Y, Z)-\eta(Y) g(X, Z) \tag{2.12}\\
&+ 2 \delta \alpha \beta[-\eta(X) g(\phi Y, Z)+\eta(Y) g(\phi X, Z)] \\
&-[(Y \alpha) g(\phi X, Z)+(X \alpha) g(Y, \phi Z)] \\
&\left.-(Y \beta) g\left(\phi^{2} X, Z\right)+(X \beta) g\left(\phi^{2} Y, Z\right)\right]
\end{align*}
$$

$$
\begin{equation*}
S(X, \xi)=\left[\left((n-1)\left(\alpha^{2}+\beta^{2}\right)-(\xi \beta)\right] \eta(X)+\delta((\phi X) \alpha)+(n-2) \delta(X \beta),\right. \tag{2.13}
\end{equation*}
$$

$$
\begin{gather*}
S(\xi, \xi)=(n-1)\left(\alpha^{2}+\beta^{2}\right)-\delta(n-1)(\xi \beta) \tag{2.14}\\
Q \xi=\left(\delta(n-1)\left(\alpha^{2}+\beta^{2}\right)-(\xi \beta)\right) \xi+\delta \phi(\operatorname{grad} \alpha)-\delta(n-2)(\operatorname{grad} \beta) \tag{2.15}
\end{gather*}
$$

where R is curvature tensor, while Q is the Ricci operator given by $S(X, Y)=$ $g(Q X, Y)$.
Further in an δ-Lorentzian trans-Sasakian manifold, we have

$$
\begin{equation*}
\delta \phi(\operatorname{grad} \alpha)=\delta(n-2)(\operatorname{grad} \beta) \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \alpha \beta-\delta(\xi \alpha)=0 \tag{2.17}
\end{equation*}
$$

The ξ-sectional curvature K_{ξ} of M is the sectional curvature of the plane spanned by ξ and a unit vector field X. From (2.11), we have

$$
\begin{equation*}
K_{\xi}=g(R(\xi, X), \xi, X)=\left(\alpha^{2}+\beta^{2}\right)-\delta(\xi \beta) \tag{2.18}
\end{equation*}
$$

It follows from (2.17) that ξ-sectional curvature does not depend on X. From (2.11)

$$
\begin{gather*}
g(R(\xi, Y) Z, \xi)=\left[\left(\alpha^{2}+\beta^{2}\right)-\delta(\xi \beta)\right] g(Y, Z) \tag{2.19}\\
\quad+\left[(\xi \beta)-\delta\left(\alpha^{2}+\beta^{2}\right)\right] \eta(Y) \eta(Z)+[2 \alpha \beta+\delta(\delta \alpha)] g(\phi Y, Z) \\
C(X, Y) Z=R(X, Y) Z-\frac{1}{(n-2)}[S(Y, Z) X-S(X, Z) Y \tag{2.20}\\
\\
+g(Y, Z) Q X-g(X, Z) Q Y]+\frac{r}{(n-1)(n-2)}[g(Y, Z) X-g(X, Z) Y] .
\end{gather*}
$$

An affine connection $\bar{\nabla}$ in M is called semi-symmetric connection [13], if its torsion tensor satisfies the following relations

$$
\begin{equation*}
\bar{T}(X, Y)=\bar{\nabla}_{X} Y-\bar{\nabla}_{Y} X-[X, Y] \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{T}(X, Y)=\eta(X) Y-\eta(Y) X \tag{2.22}
\end{equation*}
$$

Moreover, a semi-symmetric connection is called semi-symmetric metric connection if

$$
\begin{equation*}
\bar{g}(X, Y)=0 \tag{2.23}
\end{equation*}
$$

If ∇ is metric connection and $\bar{\nabla}$ is the semi-symmetric metric connection with non-vanishing torsion tensor T in M, then we have

$$
\begin{equation*}
T(X, Y)=\eta(Y) X-\eta(X) Y \tag{2.24}
\end{equation*}
$$

$$
\begin{equation*}
\bar{\nabla}_{X} Y-\nabla_{X} Y=\frac{1}{2}\left[T(X, Y)+T^{\prime}(X, Y)+T^{\prime}(X, Y)\right] \tag{2.25}
\end{equation*}
$$

where

$$
\begin{equation*}
g(T(Z, X), Y)=g\left(T^{\prime}(X, Y), Z\right) \tag{2.26}
\end{equation*}
$$

By using (2.4), (2.23) and (2.25), we get

$$
\begin{gather*}
g\left(T^{\prime}(X, Y), Z\right)=g(\eta(X) Z-\eta(Z) X, Y) \\
g\left(T^{\prime}(X, Y), Z\right)=\eta(X) g(Z, Y)-\delta g(X, Y) g(\xi, Z), \\
T^{\prime}(X, Y)=\eta(X) Y-\delta g(X, Y) \xi \tag{2.27}\\
T^{\prime}(Y, X)=\eta(Y) X-\delta g(X, Y) \xi \tag{2.28}
\end{gather*}
$$

From (2.23), (2.24),(2.26) and (2.27), we get

$$
\bar{\nabla}_{X} Y=\nabla_{X} Y+\eta(Y) X-\delta g(X, Y) \xi
$$

Let M be an n-dimensional δ-Lorentzian trans-Sasakian manifold and ∇ be the metric connection on M. The relation between the semi-symmetric metric connection $\bar{\nabla}$ and the metric connection ∇ on M is given by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+\eta(Y) X-\delta g(X, Y) \xi \tag{2.29}
\end{equation*}
$$

3. Curvature Tensor on δ-Lorentzian Trans-Sasakian Manifold with a Semi-symmetric Metric Connection

Let M be an n-dimensional δ-Lorentzian trans-Sasakian manifold. The curvature tensor \bar{R} of M with respect to the semi-symmetric metric connection $\bar{\nabla}$ is defined by

$$
\begin{equation*}
\bar{R}(X, Y) Z=\bar{\nabla}_{X} \bar{\nabla}_{Y} Z-\bar{\nabla}_{Y} \bar{\nabla}_{X} Z-\bar{\nabla}_{[X, Y]} Z \tag{3.1}
\end{equation*}
$$

By using (2.4), (2.28) and (3.1), we get

$$
\begin{align*}
\bar{R}(X, Y) Z= & R(X, Y) Z+(\delta)[g(X, Z) Y-g(Y, Z) X] \tag{3.2}\\
& +(\beta+\delta)[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)] \xi \\
- & (\beta \delta-1)[\eta(Y) X-\eta(X) Y] \eta(Z) \\
+ & \alpha[g(\phi X, Z) Y-g(\phi Y, Z) \phi X-g(X, Z) \phi Y+g(Y, Z) \phi X]
\end{align*}
$$

where

$$
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z
$$

is the Riemannian curvature tensor of connection ∇.
Lemma 3.1. Let M be an n-dimensional δ-Lorentzian trans-Sasakian manifold with a semi-symmetric metric connection, then

$$
\begin{gather*}
\left(\bar{\nabla}_{X} \phi\right)(Y)=\alpha(g(\phi X, Y) \xi-\delta \eta(Y) X)+\beta(g(\phi X, Y) \xi-(\delta \beta+\delta) \eta(Y) \phi X), \tag{3.3}\\
\bar{\nabla}_{X} \xi=-(1+\delta \beta) X-(1+\delta \beta) \eta(X) \xi-\delta \alpha \phi X \tag{3.4}\\
\left(\bar{\nabla}_{X} \eta\right) Y=\alpha g(\phi X, Y)+(\beta+\delta) g(X, Y)-(1+\beta \delta) \eta(X) \eta(Y) \tag{3.5}
\end{gather*}
$$

Proof. By the covariant differentiation of ϕY with respect to X, we have

$$
\bar{\nabla}_{X} \phi Y=\left(\bar{\nabla}_{X} \phi\right)+\phi\left(\bar{\nabla}_{X} Y\right) .
$$

By using (2.1) and (2.28), we have

$$
\left(\bar{\nabla}_{X} \phi\right) Y=\left(\nabla_{X} \phi\right) Y-\eta(Y) \phi X .
$$

In view of (2.7), the last equation gives

$$
\left(\bar{\nabla}_{X} \phi\right)(Y)=\alpha(g(\phi X, Y) \xi-\delta \eta(Y) X)+\beta(g(\phi X, Y) \xi-(\delta \beta+\delta) \eta(Y) \phi X) .
$$

To prove (3.4), we replace $Y=\xi$ in (2.28) and we have

$$
\bar{\nabla}_{X} \xi=\nabla_{X} \xi+\eta(\xi) X-\delta g(X, \xi) \xi
$$

By using (2.2), (2.4) and (2.8), the above equation gives

$$
\bar{\nabla}_{X} \xi=-(1+\delta \beta) X-(1+\delta \beta) \eta(X) \xi-\delta \alpha \phi X .
$$

In order to prove (3.5), we differentiate $\eta(Y)$ covariantly with respect to X and using (2.28), we have

$$
\bar{\nabla}_{X} \eta(Y)=\left(\nabla_{X} \eta\right) Y+g(X, Y)-\eta(X) \eta(Y) .
$$

Using (2.9) in above equation, we get

$$
\left(\bar{\nabla}_{X} \eta\right) Y=\alpha g(\phi X, Y)+(\beta+\delta) g(X, Y)-(1+\beta \delta) \eta(X) \eta(Y) .
$$

Lemma 3.2. Let M be an n-dimensional δ-Lorentzian trans-Sasakian manifold with a semi-symmetric metric connection, then

$$
\begin{align*}
\bar{R}(X, Y) \xi= & \left(\alpha^{2}+\beta^{2}-\delta \beta\right)[\eta(X) Y-\eta(Y) X] . \tag{3.6}\\
& +(2 \alpha \beta+\delta \alpha)[\eta(Y) \phi X-\eta(X) \phi Y]
\end{align*}
$$

$$
+\delta\left[(Y \alpha) \phi X-(-X \alpha) \phi Y-(X \beta) \phi^{2} Y+(Y \beta) \phi^{2} X\right] .
$$

Proof. By replacing $Z=\xi$ in (3.2), we have

$$
\begin{gathered}
\bar{R}(X, Y) \xi=R(X, Y) \xi+(\delta)[g(X, \xi) Y-g(Y, \xi) X] \\
+(\beta+\delta)[g(Y, \xi) \eta(X)-g(X, \xi) \eta(Y)] \xi \\
-(\beta \delta-1)[\eta(Y) X-\eta(X) Y] \eta(\xi) \\
+\alpha[g(\phi X, \xi) Y-g(\phi Y, \xi) \phi X-g(X, \xi) \phi Y+g(Y, \xi) \phi X]
\end{gathered}
$$

In view of (2.2), (2.4) and (2.10), the above equation reduces to

$$
\begin{aligned}
\bar{R}(X, Y) \xi= & \left(\alpha^{2}+\beta^{2}-\delta \beta\right)[\eta(X) Y-\eta(Y) X] \\
& +(2 \alpha \beta+\delta \alpha)[\eta(Y) \phi X-\eta(X) \phi Y] \\
& +\delta\left[(Y \alpha) \phi X-(X \alpha) \phi Y-(X \beta) \phi^{2} Y+(Y \beta) \phi^{2} X\right] .
\end{aligned}
$$

Remark 3.1. Replace $Y=\xi$ and using (3.2), (2.11), (2.2) and (2.4), we obtain

$$
\begin{gather*}
\bar{R}(X, \xi) \xi=\left(\alpha^{2}+\beta^{2}-\delta \beta\right)[-X-\eta(X) Y] \tag{3.7}\\
+(2 \alpha \beta+\delta \alpha+\delta(\xi \alpha))\left[\phi X+\delta(\xi \beta) \phi^{2} X\right] .
\end{gather*}
$$

Remark 3.2. Now, again replace $X=\xi$ in (3.6), using (2.1), (2.2) and (2.4), we obtain

$$
\begin{gather*}
\bar{R}(\xi, Y) \xi=\left(\alpha^{2}+\beta^{2}-\delta \beta\right)[-\eta(Y) \xi-Y] \tag{3.8}\\
-(2 \alpha \beta+\delta \alpha+\delta(\xi \alpha))\left[\phi Y-\delta(\xi \beta) \phi^{2} Y\right] .
\end{gather*}
$$

Remark 3.3. Replace $Y=X$ in (3.8), we get

$$
\begin{gather*}
\bar{R}(\xi, X) \xi=-\left(\alpha^{2}+\beta^{2}-\delta \beta\right)[-X-\eta(X) \xi] \tag{3.9}\\
-(2 \alpha \beta+\delta \alpha+\delta(\xi \alpha))\left[\phi X-\delta(\xi \beta) \phi^{2} X\right] .
\end{gather*}
$$

From (3.7) and (3.9), we obtain

$$
\begin{equation*}
\bar{R}(X, \xi) \xi=-\bar{R}(\xi, X) \xi \tag{3.10}
\end{equation*}
$$

Now, contracting X in (3.2), we get

$$
\begin{align*}
\bar{S}(Y, Z)= & S(Y, Z)-[(\delta)(n-2)+\beta] g(Y, Z) \tag{3.11}\\
& -(\beta \delta-1)(n-2) \eta(Z) \eta(Y)-\alpha(n-2) g(\phi Y, Z),
\end{align*}
$$

where \bar{S} and S are the Ricci tensors of the connections $\bar{\nabla}$ and ∇, respectively on M.
This gives

$$
\begin{align*}
\bar{Q} Y= & Q Y-[(\delta)(n-2)+\beta] Y \tag{3.12}\\
& -(\beta \delta-1)(n-2) \eta(Y) \xi-\alpha(n-2) \phi Y
\end{align*}
$$

where \bar{Q} and Q are Ricci operator with respect to the semi-symmetric metric connection and metric connection respectively and define as $g(\bar{Q} Y, Z)=\bar{S}(Y, Z)$ and $g(Q Y, Z)=S(Y, Z)$ respectively.

Replace $Y=\xi$ in (3.12) and using (2.15), we get

$$
\begin{align*}
\bar{Q} \xi=\delta & (n-1)\left(\alpha^{2}+\beta^{2}\right) \xi-(\xi \beta) \xi-2 \delta(n-2) \xi \tag{3.13}\\
& +\delta \phi(\operatorname{grad} \alpha)-\delta(n-2)(\operatorname{grad} \beta)-\beta(n-1) \xi
\end{align*}
$$

Putting $Y=Z=e_{i}$ and taking summation over $i, 1 \leq i \leq n-1$ in (3.11), using (2.14) and also the relations $r=S\left(e_{i}, e_{i}\right)=\sum_{i=1}^{n} \delta_{i} R\left(e_{i}, e_{i}, e_{i}, e_{i}\right)$, we get

$$
\begin{equation*}
\bar{r}=r-(n-1)[(\delta)(n-2)+2 \beta] \tag{3.14}
\end{equation*}
$$

where \bar{r} and r are the scalar curvatures of the connections $\bar{\nabla}$ and ∇, respectively on M.

Now, we have the following lemmas.
Lemma 3.3. Let M be an n-dimensional δ-Lorentzian trans-Sasakian manifold with a semi-symmetric metric connection, then

$$
\begin{align*}
\bar{S}(\phi Y, Z)= & -\delta\left(\phi^{2} Y\right) \alpha-\delta(n-2)(\phi Y) \beta-\alpha(n-2) g(\phi Y, \phi Z), \tag{3.15}\\
\bar{S}(Y, \xi)= & {\left[(n-1)\left(\alpha^{2}+\beta^{2}-\delta(\xi \beta)-\delta \beta(n-1)\right] \eta(Y)\right.} \tag{3.16}\\
& +\delta(n-2)(Y \beta)+\delta(\phi Y) \beta \\
\bar{S}(\xi, \xi)= & {\left[(n-1)\left(\alpha^{2}+\beta^{2}-\delta(\xi \beta)-\delta \beta(n-1)\right] \eta(Y) .\right.} \tag{3.17}
\end{align*}
$$

Proof. By replacing $Y=\phi Y$ in equation (3.11) and using (2.13) and (2.5), we have (3.15). Taking $Y=\xi$ in (3.11) and using (2.13) we get (3.16). (3.17) follows from considering $Y=\xi$ in (3.16) we get (3.17).

Lemma 3.4. Let M be an n-dimensional δ-Lorentzian trans-Sasakian manifold with a semi-symmetric metric connection, then

$$
\begin{align*}
\bar{S}(\operatorname{grad} \alpha, \xi)= & \delta(n-1)\left(\alpha^{2}+\beta^{2}(\xi \beta)-\beta(n-1)(\xi \alpha)-(\xi \alpha)(\xi \beta)\right. \tag{3.18}\\
& +\delta(\phi \operatorname{grad} \alpha) \alpha+\delta(n-2) g(\operatorname{grad} \alpha, \operatorname{grad} \beta)
\end{align*}
$$

$$
\begin{align*}
\bar{S}(\operatorname{grad} \beta, \xi)= & \delta(n-1)\left(\alpha^{2}+\beta^{2}(\xi \beta)-\beta(n-1)(\xi \beta)-(\xi \beta)^{2}\right. \tag{3.19}\\
& +\delta(\phi \operatorname{grad} \beta) \alpha+\delta(n-2) g(\operatorname{grad} \beta)^{2} .
\end{align*}
$$

Proof. From equation (3.11) and (3.16) and using $Y=\operatorname{grad\alpha }$ we have (3.18). Similarly taking $\xi=\operatorname{grad} \beta$ in (3.11) and using (3.16), we get (3.19). Using (3.6), (3.13) and (3.16), for constant α and β, we have

$$
\begin{gather*}
\bar{R}(X, Y) \xi=\left(\alpha^{2}+\beta^{2}-\delta(\xi \beta)[\eta(Y) X-\eta(X) Y],\right. \tag{3.20}\\
\bar{S}(X, Y)=\left[(n-1)\left(\alpha^{2}+\beta^{2}-\delta(\xi \beta)-\delta \beta(n-1)\right] \eta(Y),\right. \tag{3.21}\\
\bar{Q} \xi=\delta(n-1)\left(\alpha^{2}+\beta^{2} \xi-\delta(\xi \beta) \xi-2 \delta(n-2)-\beta(n-1) \xi .\right. \tag{3.22}
\end{gather*}
$$

4. Quasi-projectively flat δ-Lorentzian trans-Sasakian Manifold with a Semi-symmetric Metric Connection

Let M be an n-dimensional δ-Lorentzian trans-Sasakian manifold. If there exists a one to one correspondence between each co-ordinate neighborhood of M and a domain in Euclidean space such that any geodesic of δ-Lorentzian trans-Sasakian manifold corresponds to a straight line in the Euclidean space, then M is said to be locally projectively flat. The projective curvature tensor \bar{P} with respect to semi-symmetric metric connection is defined by

$$
\begin{equation*}
\bar{P}(X, Y) Z=\bar{R}(X, Y) Z-\frac{1}{(n-1)}[\bar{S}(Y, Z) X-\bar{S}(X, Z) Y] . \tag{4.1}
\end{equation*}
$$

Definition 4.1. A δ-Lorentzian trans-Sasakian manifold M is said to be quasiprojectively flat with respect to semi-symmetric metric connection, if

$$
\begin{equation*}
g(\bar{P}(\phi X, Y) Z, \phi U)=0 \tag{4.2}
\end{equation*}
$$

where \bar{P} is the projective curvature tensor with respect to semi-symmetric metric connection.

Now, from (4.1) taking inner product with U, we get

$$
\begin{align*}
g(\bar{P}(X, Y) Z, U)= & g(\bar{R}(X, Y) Z, U)-\frac{1}{(n-1)} \tag{4.3}\\
& {[\bar{S}(Y, Z) g(X, U)-\bar{S}(X, Z) g(Y, U)] . }
\end{align*}
$$

Replace $X=\phi X$ and $U=\phi U$ in (4.3), we get

$$
\begin{equation*}
g(\bar{P}(\phi X, Y) Z, \phi U)=g(\bar{R}(\phi X, Y) Z, \phi U)-\frac{1}{(n-1)} \tag{4.4}
\end{equation*}
$$

$$
[\bar{S}(Y, Z) g(\phi X, \phi U)-\bar{S}(\phi X, Z) g(Y, \phi U)] .
$$

From (4.2) and (4.4), we have

$$
\begin{equation*}
g(\bar{R}(\phi X, Y) Z, \phi U)=\frac{1}{(n-1)}[\bar{S}(Y, Z) g(\phi X, \phi U)-\bar{S}(\phi X, Z) g(Y, \phi U)] . \tag{4.5}
\end{equation*}
$$

Now, using equations (2.1), (2.4), (3.11) and (3.15) in equation (4.5), we have

$$
\begin{align*}
g(\bar{R}(\phi X, Y) Z, & \phi U)=\frac{1}{(n-1)}[\bar{S}(Y, Z) g(\phi X, \phi U)-\bar{S}(\phi X, Z) g(Y, \phi U)] \tag{4.6}\\
& -\frac{(\delta+\beta)}{(n-1)} g(\phi X, Z) g(Y, \phi U)+\frac{(\delta+\beta)}{(n-1)} g(Y, Z) g(\phi X, \phi U) \\
& -\frac{(\delta \beta-1)}{(n-1)} \eta(Y) \eta(Z) g(\phi X, \phi U)+\frac{(\delta \alpha)}{(n-1)} \eta(X) \eta(Z) g(\phi X, \phi U) \\
& -\frac{\alpha}{(n-1)} g(X, Z) g(Y, \phi U)-\frac{\alpha}{(n-1)} g(\phi Y, Z) g(\phi X, \phi U) \\
& +\alpha g(Y, Z) g(X, \phi U)+\alpha g(\phi X, Z) g(\phi X, \phi U) .
\end{align*}
$$

Let $\left\{e_{1}, e_{2} \ldots \ldots \ldots . . e_{n-1}, \xi\right\}$ be a local orthonormal basis of vector fileds on δ-Lorentzian trans-Sasakian manifold M, then $\left\{\phi e_{1}, \phi e_{2} \ldots \phi e_{n-1}, \xi\right\}$ is also a local orthonormal basis of vector fields on δ-Lorentzian trans-Sasakian manifold M. Now, putting $X=U=e_{i}$ in equation (4.6) and using (2.2), (2.3),(2.19), (3.11) and (3.16), we have

$$
\begin{align*}
& S(Y, Z)=\left[(n-2)(\beta+\delta)+\delta(n-1)\left(\alpha^{2}+\beta^{2}\right)-(n-1)(\xi \beta)\right] g(Y, Z) \tag{4.7}\\
&+[\delta(n-2)(\xi \beta)+(n-2)(\beta \delta-1)] \eta(Y) \eta(Z) \\
&-[2 \delta(n-1) \alpha \beta+(n-1)(\xi \alpha)-\alpha] g(\phi Y, Z) \\
&-\delta \eta(Y)(\phi Z) \alpha-\delta(n-2)(\xi \beta) \eta(Y) .
\end{align*}
$$

If $\alpha=0$ and $\beta=$ constant in (4.7), we get

$$
\begin{equation*}
S(Y, Z)=\left[(n-2)(\beta+\delta)+(n-1) \delta \beta^{2}\right] g(Y, Z)+(\beta \delta-1)(2-n) \eta(Y) \eta(Z) . \tag{4.8}
\end{equation*}
$$

Therefore, we have

$$
S(Y, Z)=a g(Y, Z)+b \eta(Y) \eta(Z)
$$

where $a=(n-2)(\beta+\delta)+(n-1) \delta \beta^{2}$ and $b=(\beta \delta-1)(2-n)$.
These results shows that the manifold under the consideration is an η-Einstein manifold. Thus we can state the following theorem:

Theorem 4.1. An n-dimensional quasi projectively flat δ-Lorentzian transSasakian manifold M with respect to a semi-symmetric metric connection is an η-Einstein manifold if $\alpha=0$ and $\beta=$ constant.

5. ϕ-Projectively flat δ-Lorentzian Trans-Sasakian Manifold with a Semisymmetric Metric Connection

An n-dimensional δ-Lorentzian trans-Sasakian manifold with a semi-symmetric metric connection is said to be ϕ-projectively flat if

$$
\begin{equation*}
\phi^{2}(\bar{P}(\phi X, \phi Y) \phi Z)=0 \tag{5.1}
\end{equation*}
$$

where \bar{P} is the projective curvature tensor of $M n$-dimensional δ-Lorentzian transSasakian manifold with respect to a semi-symmetric metric connection. Suppose M be ϕ-projectively flat δ-Lorentzian trans-Sasakian manifold with respect to a semi-symmetric metric connection. It is know that $\phi^{2}(\bar{P}(\phi, X, \phi Y) \phi Z)=0$ holds if and only if

$$
\begin{equation*}
g(\bar{P}(\phi X, \phi Y) \phi Z, \phi U)=0 \tag{5.2}
\end{equation*}
$$

for any $X, Y, Z, U \in T M$. Replace $Y=\phi Y$ and $U \phi U$ in (4.4), we have

$$
\begin{array}{r}
g(\bar{P}(\phi X, \phi Y) \phi Z, \phi U)=g(\bar{R}(\phi X, \phi Y) \phi Z, \phi U)-\frac{1}{(n-1)} \tag{5.3}\\
{[\bar{S}(\phi Y, \phi Z) g(\phi X, \phi U)-\bar{S}(\phi X, \phi Z) g(\phi Y, \phi U)]}
\end{array}
$$

From (5.2) and (5.3), we have

$$
\begin{array}{r}
g(\bar{R}(\phi X, \phi Y) \phi Z, \phi U)=\frac{1}{(n-1)}[\bar{S}(\phi Y, \phi Z) g(\phi X, \phi U) \tag{5.4}\\
-\bar{S}(\phi X, \phi Z) g(\phi Y, \phi U)]
\end{array}
$$

Now, using $(2.1),(2.2),(2.4),(2.5),(3.2)$ and (3.11) in equation (5.4), we have

$$
\begin{align*}
g(\bar{R}(\phi X, \phi Y) \phi Z, \phi U) & =\frac{1}{(n-1)}[\bar{S}(\phi Y, \phi Z) g(\phi X, \phi U)-\bar{S}(\phi X, \phi Z) g(\phi Y, \phi U)] \tag{5.5}\\
- & \frac{(\delta+\beta)}{(n-1)} g(\phi Y, \phi Z) g(\phi X, \phi U)+\frac{(\delta+\beta)}{(n-1)} g(\phi X, \phi Z) g(\phi Y, \phi U) \\
- & \frac{\alpha}{(n-1)} g(Y, \phi Z) g(\phi X, \phi U)-\frac{\alpha}{(n-1)} g(X, \phi Y Z) g(\phi X, \phi U) \\
& +\alpha g(\phi Y, \phi Z) g(X, \phi U)-\alpha g(\phi X, \phi Z) g(Y, \phi U)
\end{align*}
$$

Let $\left\{e_{1}, e_{2} \ldots \ldots \ldots e_{n-1}, \xi\right\}$ be a local orthonormal basis of vector fileds on δ-Lorentzian trans-Sasakian manifold M, then $\left\{\phi e_{1}, \phi e_{2} \ldots \ldots . . \phi e_{n-1}, \xi\right\}$ is also a local orthonormal basis of vector fields on δ-Lorentzian trans-Sasakian manifold M. Now putting
$X=U=e_{i}$ in equation (5.5) and using (2.1)-(2.5), (2.19), (3.11) and (3.16), we have

$$
\begin{align*}
S(Y, Z) & =\left[(n-2)(\beta+\delta)+\delta(n-1)\left(\alpha^{2}+\beta^{2}\right)-(n-1)(\xi \beta)\right] g(Y, Z) \tag{5.6}\\
& +[2 \delta(n-2)(\xi \beta)+(n-2)(\beta \delta-1)] \eta(Y) \eta(Z) \\
& +[\alpha-2 \delta \alpha \beta(n-1)-(n-1)(\xi \alpha)] g(\phi Y, Z) \\
& -[\delta(\phi Z) \alpha+\delta(n-2)(Z \beta)] \eta(Y)-[\delta(\phi Y) \alpha+\delta(n-2)(Y \beta)] \eta(Z)
\end{align*}
$$

If $\alpha=0$ and $\beta=$ constant in (5.6), we get

$$
\begin{equation*}
S(Y, Z)=\left[(n-2)(\beta+\delta)+(n-1) \delta \beta^{2}\right] g(Y, Z)+(\beta \delta-1)(2-n) \eta(Y) \eta(Z) \tag{5.7}
\end{equation*}
$$

Therefore,

$$
S(Y, Z)=a g(Y, Z)+b \eta(Y) \eta(Z)
$$

where $a=(n-2)(\beta+\delta)+(n-1) \delta \beta^{2}$ and $b=(\beta \delta-1)(2-n)$.
This result shows that the manifold under the consideration is an η-Einstein manifold. Thus we can state the following theorem:

Theorem 5.1. An n-dimensional ϕ-projectively flat δ-Lorentzian trans-Sasakian manifold M with respect to a semi-symmetric metric connection is an η-Einstein manifold if $\alpha=0$ and $\beta=$ constant.
6. δ-Lorentzian trans-Sasakian Manifold with a Semi-symmetric Metric Connection satisfying $\bar{R} \cdot \bar{S}=0$

Now, suppose that M be an n-dimensional δ-Lorentzian trans-Sasakian manifold with a semi-symmetric metric connection satisfying the condition:

$$
\begin{equation*}
\bar{R}(X, Y) \cdot \bar{S}=0 \tag{6.1}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
\bar{S}(\bar{R}(X, Y) Z, U)+\bar{S}(Z, \bar{R}(X, Y) U)=0 \tag{6.2}
\end{equation*}
$$

Now, we replace $X=\xi$ in equation (6.2), using equations (2.11) and (6.2), we have

$$
\begin{align*}
& \delta\left(\alpha^{2}+\beta^{2}\right) g(Y, Z) \bar{S}(\xi, U)-\left(\alpha^{2}+\beta^{2}\right) \eta(Z) \bar{S}(Y, U)-2 \delta \alpha \beta g(\phi Y, Z) \bar{S}(\xi, U) \tag{6.3}\\
& +2 \alpha \beta \eta(Z) \bar{S}(\phi Y, U)+\delta(Z \alpha) \bar{S}(\phi Y, U)-\delta g(\phi Y, Z) \bar{S}(\operatorname{grad\alpha }, U) \\
& -\delta g(\phi Y, \phi Z) \bar{S}(\operatorname{grad} \beta, U)+\delta(Z \beta) \bar{S}(Y, U)-\delta(Z \beta) \eta(Y) \bar{S}(\xi, U) \\
& -\delta g(Y, Z) \bar{S}(\xi, U)+\delta \eta(Z) \bar{S}(Y, U)+\alpha g(\phi Y, Z) \bar{S}(\xi, U)-\delta \alpha \eta(Z) \bar{S}(\phi Y, U) \\
& +\delta\left(\alpha^{2}+\beta^{2}\right) g(Y, U) \bar{S}(\xi, Z)-\left(\alpha^{2}+\beta^{2}\right) \eta(U) \bar{S}(Y, Z)-2 \delta \alpha \beta g(\phi Y, U) \bar{S}(\xi, Z)
\end{align*}
$$

$$
\begin{aligned}
& +2 \alpha \beta \eta(U) \bar{S}(\phi Y, Z)+\delta(U \alpha) \bar{S}(\phi Y, Z)-\delta g(\phi Y, U) \bar{S}(\operatorname{grad\alpha }, Z) \\
& -\delta g(\phi Y, \phi U) \bar{S}(\operatorname{grad\beta }, Z)+\delta(U \beta) \bar{S}(Y, Z)-\delta(U \beta) \eta(Y) \bar{S}(\xi, Z) \\
& -\delta g(Y, U) \bar{S}(\xi, Z)+\delta \eta(U) \bar{S}(Y, Z)+\alpha g(\phi Y, U) \bar{S}(\xi, Z)-\delta \alpha \eta(U) \bar{S}(\phi Y, Z)=0 .
\end{aligned}
$$

Using equations (2.1)-(2.5), (2.13), (2.14), (3.11) and (3.15)-(3.19) in equation (6.3)

$$
\begin{aligned}
& {\left[\left(\alpha^{2}+\beta^{2}\right)-\delta(\xi \beta)-\delta \beta\right] S(Y, Z)} \\
& =\left[\delta(n-1)\left(\alpha^{2}+\beta^{2}\right)-2 \beta(n-1)\left(\alpha^{2}+\beta^{2}\right)-2(n-1)\left(\alpha^{2}+\beta^{2}\right)(\xi \beta)\right. \\
& +2 \delta \beta(n-1)(\xi \beta)-\delta(\xi \beta)^{2}+(\phi g r a d \beta) \alpha+(n-2)(g r a d \beta)^{2} \\
& +\delta \beta^{2}(n-2)+\delta(n-2)\left(\alpha^{2}+\beta^{2}\right)+\beta\left(\alpha^{2}+\beta^{2}\right) \\
& -2 \alpha^{2} \beta(n-2)-\delta \alpha(\xi \alpha)-(n-2)(\xi \beta)-\delta \beta(\xi \beta) \\
& \left.-\beta(n-2)+\delta \alpha^{2}(n-2)\right] g(Y, Z)+[-\delta(\phi g r a d \beta) \alpha \\
& -\delta(n-2)\left(g^{2} a d \beta\right)^{2}+(n-2)(\beta \delta-1)\left(\alpha^{2}+\beta^{2}\right) \\
& +2 \delta \alpha^{2} \beta(n-2)+\alpha(n-2)(\xi \alpha)+(\beta+\delta)(n-2)(\xi \beta) \\
& \left.+\beta(\beta+\delta)(n-2)-\alpha^{2}(n-2)\right] \eta(Y) \eta(Z)+\left[-2 \delta \alpha \beta(n-1)\left(\alpha^{2}+\beta^{2}\right)\right. \\
& +2(n-2) \alpha \beta^{2}+2 \alpha \beta(n-2)(\xi \beta)-(n-1)\left(\alpha^{2}+\beta^{2}\right)(\xi \alpha) \\
& +\delta \beta(n-2)(\xi \alpha)+\delta(\xi \alpha)(\xi \beta)+(\phi g r a d \alpha) \alpha+(n-2)(g(g r a d \alpha, g r a d \beta) \\
& \left.+\alpha\left(\alpha^{2}+\beta^{2}\right)-\delta \alpha(\xi \beta)-2 \alpha \beta(n-2)(\delta)-(n-2)(\delta \alpha)+\alpha(n-2)\right] g(\phi Y, Z) \\
& +[\delta(\xi \alpha)+2 \alpha \beta-\delta \alpha] S(\phi Y, Z)+[(n-2)(\xi \beta)(Z \beta) \\
& +\left[\delta\left(\alpha^{2}+\beta^{2}\right)(\phi Z) \alpha-\delta(n-2)\left(\alpha^{2}+\beta^{2}\right)(Z \beta)+(\xi \beta)(\phi Z) \alpha\right. \\
& \beta(\phi Z) \alpha+\beta(n-2)(Z \beta)] \eta(Y)+\left[\delta\left(\alpha^{2}+\beta^{2}\right)(\phi Y) \alpha+\delta(n-2)\left(\alpha^{2}+\beta^{2}\right)(Y \beta)\right. \\
& -2 \delta \alpha \beta\left(\phi^{2} Y\right) \alpha-2 \delta \alpha \beta(n-2)(\phi Y \beta)-\beta(\phi Y) \alpha \\
& \left.-\beta(n-2)(Y \beta)+\alpha\left(\phi^{2} Y\right) \alpha+\alpha(n-2)(\phi Y \beta)\right] \eta(Z) \\
& -(n-2)(Y \beta)(Z \beta)+(n-2)(Z \beta)(\xi \beta) .
\end{aligned}
$$

If $\alpha=0$ and $\beta=$ constant in (5.6), we get

$$
S(Y, Z)=a g(Y, Z)+b \eta(Y) \eta(Z),
$$

where $a=-\left[\frac{(n-1) \delta \beta^{4}+(n-2)(\operatorname{grad} \beta)^{2}+(n-2) \delta \beta^{2}+(n-2) \delta \beta^{2}-(n-2) \beta+(2 n-3) \beta^{3}}{(\beta+\delta) \beta}\right]$ and $b=-\left[\frac{(n-2)(\beta \delta-1) \beta^{2}+(n-2)(\beta+\delta) \beta-(n-2) \delta\left(\text { grad }^{2}\right.}{(\beta+\delta) \beta}\right]$. This show that M is an $\eta-$ Einstein manifold. Thus,we can state the following theorem:
Theorem 6.1. An n-dimensional δ-Lorentzian trans-Sasakian manifold M with respect to a semi-symmetric metric connection $\bar{\nabla}$ satisfying $\bar{R} . \bar{S}=0$, then δ Lorentzian trans-Sasakian manifold M is an η-Einstein manifold if $\alpha=0$ and $\beta=$ constant .

7. δ-Lorentzian Trans-Sasakian Manifold with a Semi-symmetric Metric Connection satisfying $\bar{P} . \bar{S}=0$

Now, we consider δ-Lorentzian trans-Sasakian manifold with a semisymmetric metric connection satisfying

$$
\begin{equation*}
(\bar{P}(X, Y) \cdot \bar{S})(Z, U)=0, \tag{7.1}
\end{equation*}
$$

where \bar{P} is the projective curvature tensor and \bar{S} is the Ricci tensor with a semisymmetric metric connection.Then, we have

$$
\begin{equation*}
\bar{S}(\bar{P}(X, Y) Z, U)+\bar{S}(Z, \bar{P}(X, Y) U)=0 \tag{7.2}
\end{equation*}
$$

Replace $X=\xi$ in the equation (7.2), we get

$$
\begin{equation*}
\bar{S}(\bar{P}(\xi, Y) Z, U)+\bar{S}(Z, \bar{P}(\xi, Y) U)=0 \tag{7.3}
\end{equation*}
$$

Putting $X=\xi$ in (4.1), we get

$$
\begin{equation*}
\bar{P}(\xi, Y) Z=\bar{R}(\xi, Y) Z-\frac{1}{(n-1)}[\bar{S}(Y, Z) \xi-\bar{S}(\xi, Z) Y] . \tag{7.4}
\end{equation*}
$$

Using (2.1), (2.2), (2.4), (2.11), (3.2), (3.11), (3.17) and (7.4) in (7.3), we get

$$
\begin{align*}
& \frac{\delta\left(\alpha^{2}+\beta^{2}\right)(n-1)+(\beta+\delta)(n-2)}{(n-1)} g(Y, Z) \bar{S}(\xi, U)-\frac{1}{(n-1)} S(Y, Z) \bar{S}(\xi, U) \tag{7.5}\\
& -\frac{(n-2)}{(n-1)}(\beta \delta-1) \eta(Y) \eta(Z) \bar{S}(\xi, U)+\frac{\alpha-2 \delta \alpha \beta(n-1)}{(n-1)} g(\phi Y, Z) \bar{S}(\xi, U) \\
& -\delta g(\phi Y, Z) \bar{S}(g r a d \alpha, U)-\delta g(\phi Y, \phi Z) \bar{S}(g r a d \beta, U)+2 \alpha \beta \eta(Z) \bar{S}(\phi Y, U) \\
& +\delta(Z \alpha) \bar{S}(\phi Y, U)+\delta(Z \beta) \bar{S}(Y, U)-\delta(Z \beta) \eta(Y) \bar{S}(\xi, U)-\delta \alpha \eta(Z) \bar{S}(\phi Y, U) \\
& -\frac{1}{(n-1)} \delta(\xi \beta) \eta(Z) \bar{S}(Y, U) \frac{(n-2)}{(n-1)} \delta(Z \beta) \bar{S}(Y, U)-\frac{1}{(n-1)} \delta(\phi Z) \alpha \bar{S}(Y, U) \\
& \frac{\delta\left(\alpha^{2}+\beta^{2}\right)(n-1)+(\beta+\delta)(n-2)}{(n-1)} g(Y, U) \bar{S}(\xi, Z)-\frac{1}{(n-1)} S(Y, U) \bar{S}(\xi, Z) \\
& -\frac{(n-2)}{(n-1)}(\beta \delta-1) \eta(Y) \eta(U) \bar{S}(\xi, Z)+\frac{\alpha-2 \delta \alpha \beta(n-1)}{(n-1)} g(\phi Y, U) \bar{S}(\xi, Z) \\
& -\delta g(\phi Y, U) \bar{S}(g r a d \alpha, Z)-\delta g(\phi Y, \phi U) \bar{S}(g r a d \beta, Z)+2 \alpha \beta \eta(U) \bar{S}(\phi Y, Z) \\
& +\delta(U \alpha) \bar{S}(\phi Y, Z)+\delta(Z \beta) \bar{S}(Y, Z)-\delta(U \beta) \eta(Y) \bar{S}(\xi, Z)-\delta \alpha \eta(U) \bar{S}(\phi Y, Z) \\
& -\frac{1}{(n-1)} \delta(\xi \beta) \eta(Z) \bar{S}(Y, Z) \frac{(n-2)}{(n-1)} \delta(U \beta) \bar{S}(Y, Z)-\frac{1}{(n-1)} \delta(\phi U) \alpha \bar{S}(Y, Z)=0
\end{align*}
$$

Putting $U=\xi$ and Using (2.1)-(2.5), (3.11) and (3.15)-(3.20) in (7.5), we get

$$
\begin{align*}
& {\left[\left(\alpha^{2}+\beta^{2}\right)-\delta(\xi \beta)-\delta \beta\right] S(Y, Z)} \tag{7.6}\\
& =\left[\delta(n-1)\left(\alpha^{2}+\beta^{2}\right)+(n-2)(\beta \delta)\left(\alpha^{2}+\beta^{2}\right)-\beta(n-1)\left(\alpha^{2}+\beta^{2}\right)\right. \\
& -\delta(n-2)(\beta \delta-1)-2(n-1)(\xi \beta)\left(\alpha^{2}+\beta^{2}\right)-(n-2)(\beta \delta-1)(\xi \beta) \\
& -2 \alpha^{2} \beta(n-2) \delta \alpha(n-2)(\xi \alpha)+\delta \alpha^{2}(n-2)+\delta \beta(n-1)+\delta(\xi \beta)^{2} \\
& \left.+(\phi g r a d \alpha) \alpha+(n-2)(\operatorname{grad} \beta)^{2}\right] g(Y, Z)+\left[(n-2) \beta(\beta+\delta)-(n-2)\left(\alpha^{2}+\beta^{2}\right)\right. \\
& +2(n-2) \delta \alpha^{2} \beta+\alpha(n-2)(\xi \alpha)+(n-2)(\beta+\delta)(\xi \beta)-\alpha^{2}(n-2) \\
& \left.-\delta(n-2)(\operatorname{grad} \beta)^{2}-\delta(\phi \operatorname{grad} \beta) \alpha\right] \eta(Y) \eta(Z)+\left[\alpha\left(\alpha^{2}+\beta^{2}\right)\right. \\
& -2 \delta \alpha \beta\left(\alpha^{2}+\beta^{2}\right)(n-1)-2 \alpha \beta^{2} n-\delta(\xi \beta)-\delta \beta(\xi \alpha)+2 \alpha \beta(\xi \beta) \\
& -2 \delta \alpha \beta(n-2)-(n-1)(\xi \alpha)+\alpha(n-2)-(n-1)\left(\alpha^{2}+\beta^{2}\right)(\xi \alpha)+(n-1) \delta \beta(\xi \alpha) \\
& +\delta(\xi \alpha)(\xi \beta)+(\phi g r a d \alpha) \alpha+) n-2) g(\operatorname{grad\alpha }, \operatorname{grad\beta })] g(\phi Y, z)+[\delta \alpha+\delta(\xi \alpha) \\
& -\delta \alpha] S(\phi Y, Z)+\left[\delta(n+3)\left(\alpha^{2}+\beta^{2}\right)(Z \beta)+\beta(n-2)(Z \beta)-\operatorname{delta}\left(\alpha^{2}+\beta^{2}\right)(\phi Z) \alpha\right. \\
& +(n-1) \beta(\phi Z) \alpha+(\xi \beta)(\phi Z) \alpha)] \eta(Y)+\left[-2 \delta \alpha \beta\left(\phi^{2} Y\right) \alpha-2 \delta \alpha \beta(n-2)(\phi Y \beta)\right. \\
& +\alpha\left(\phi^{2} Y\right) \alpha+\alpha(n-2)(\phi Y \beta)+\delta\left(\alpha^{2}+\beta^{2}\right)(\phi Y) \alpha+\delta(n-2)\left(\alpha^{2}+\beta^{2}\right)(Y \beta) \\
& -\beta(\phi Y) \alpha-\beta(n-2)(Y \beta)] \eta(Z)-(Z \alpha)\left(\phi^{2} Y\right) \alpha-(n-2)(Z \beta)(\phi Y \beta) \\
& -(Z \beta)(\phi Y) \alpha-\beta(n-2)(Y \beta) .
\end{align*}
$$

If $\alpha=0$ and $\beta=$ constant in (7.6), we get

$$
\begin{equation*}
S(Y, Z)=a g(Y, Z)+b \eta(Y) \eta(Z), \tag{7.7}
\end{equation*}
$$

where $a=-\left[\frac{(n-1) \beta^{4}+(n-2) \beta^{2}(\beta \delta)+(n-1) \beta^{3}-(n-2) \beta(\beta \delta-1)+(n-1) \delta \beta+(n-2)(\operatorname{grad} \beta)^{2}}{\beta(\beta \delta)}\right]$ and $b=-\left[\frac{(n-2) \beta(\beta+\delta)+(n-2) \beta^{2}-(n-2) \delta(\text { grad } \beta)^{2}}{\beta(\beta+\delta)}\right]$.

This result show that the manifold under the consideration is an η-Einstein manifold. Thus we have the following theorem:

Theorem 7.1. An n-dimensional δ-Lorentzian trans-Sasakian manifold M with respect to a semi-symmetric metric connection $\bar{\nabla}$ satisfying $\bar{P} . \bar{S}=0$, then δ Lorentzian trans-Sasakian manifold M is an η-Einstein manifold if $\alpha=0$ and $\beta=$ constant .

8. Weyl Conformal Curvature Tensor on δ-Lorentzian Trans-Sasakian Manifold with a Semi-symmetric Metric Connection

The Weyl conformal curvature tensor \bar{C} of type $(1,3)$ of M an n-dimensional δ-Lorentzian trans-Sasakian manifold a with semi-symmetric metric connection $\bar{\nabla}$ is given by [16]

$$
\begin{align*}
\bar{C}(X, Y) Z & =\bar{R}(X, Y) Z \tag{8.1}\\
& -\frac{1}{(n-2)}[\bar{S}(Y, Z) X-\bar{S}(X, Z) Y+g(Y, Z) \bar{Q} X-g(X, Z) \bar{Q} Y] \\
& +\frac{\bar{r}}{(n-1)(n-2)}[g(Y, Z) X-g(X, Z) Y],
\end{align*}
$$

where \bar{Q} is the Ricci operator with respect to the semi-symmetric metric connection $\bar{\nabla}$. Let M ba an n-dimensional δ-Lorentzian trans-Sasakian manifold. The Weyl conformal curvature tensor \bar{C} of M with respect to the semi-symmetric metric connection $\bar{\nabla}$ is defined in equation (8.1).

Now, taking inner product with U in (8.1), we get

$$
\begin{align*}
g(\bar{C}(X, Y) Z, U) & =g(\bar{R}(X, Y) Z, U)-\frac{1}{(n-2)}[\bar{S}(Y, Z) g(X, U) \tag{8.2}\\
& -\bar{S}(X, Z) g(Y, U)+g(Y, Z) g(\bar{Q} X, U)-g(X, Z) g(\bar{Q} Y, U)] \\
& +\frac{\bar{r}}{(n-1)(n-2)}[g(Y, Z) g(X, U)-g(X, Z) g(Y, U)] .
\end{align*}
$$

Using (2.4), (3.2), (3.11), (3.12) and (3.14) in (8.2), we get

$$
\begin{align*}
\bar{C}(X, Y, Z, U) & =g(\bar{R}(X, Y) Z, U)-\frac{1}{(n-2)}[S(Y, Z) g(X, U) \tag{8.3}\\
& -S(X, Z) g(Y, U)+g(Y, Z) g(Q X, U)-g(X, Z) g(Q Y, U)] \\
& +\frac{r}{(n-1)(n-2)}[g(Y, Z) g(X, U)-g(X, Z) g(Y, U)],
\end{align*}
$$

where $g(\bar{C}(X, Y) Z, U)=\bar{C}(X, Y, Z, U)$ and $R(X, Y) Z, U)=C(X, Y, Z, U)$ are Weyl curvature tensor with respect to the semi-symmetric metric connection respectively, we have

$$
\begin{equation*}
\bar{C}(X, Y, Z, U)=C(X, Y, Z, U), \tag{8.4}
\end{equation*}
$$

where

$$
\begin{align*}
C(X, Y, Z, U) & =g(\bar{R}(X, Y) Z, U)-\frac{1}{(n-2)}[S(Y, Z) g(X, U) \tag{8.5}\\
& -S(X, Z) g(Y, U)+g(Y, Z) g(Q X, U)-g(X, Z) g(Q Y, U)] \\
& +\frac{r}{(n-1)(n-2)}[g(Y, Z) g(X, U)-g(X, Z) g(Y, U)]
\end{align*}
$$

Theorem 8.1. The Weyl conformal curvature tensor of a δ-Lorentzian transSasakian manifold M with respect to a metric connection is equal to the Weyl curvature of δ-Lorentzian trans-Sasakian manifold with respect to the semi-symmetric
metric connection.
9. δ-Lorentzian Trans-Sasakian Manifold with Weyl Conformal Flat Conditions with a Semi-symmetric Metric Connection

Let us consider that the δ-Lorentzian trans-Sasakian manifold M with respect to the semi-symmetric metric connection is Weyl conformally flat, that is $\bar{C}=0$. Then from equation (8.1), we get

$$
\begin{align*}
\bar{R}(X, Y) Z & =\frac{1}{(n-2)}[\bar{S}(Y, Z) X-\bar{S}(X, Z) Y \tag{9.1}\\
& +g(Y, Z) \bar{Q} X-g(X, Z) \bar{Q} Y] \\
& +\frac{\bar{r}}{(n-1)(n-2)}[g(Y, Z) X-g(X, Z) Y],
\end{align*}
$$

Now, taking the inner product of equation (9.1) with U . then we get

$$
\begin{align*}
g(\bar{R}(X, Y) Z, U) & =\frac{1}{(n-2)}[\bar{S}(Y, Z) g(X, U)-\bar{S}(X, Z) g(Y, U) \tag{9.2}\\
& +g(Y, Z) g(\bar{Q} X, U)-g(X, Z) g(\bar{Q} Y, U)] \\
& -\frac{\bar{r}}{(n-1)(n-2)}[g(Y, Z) g(X, U)-g(X, Z) g(Y, U)] .
\end{align*}
$$

Using equations (2.4), (3.2), (3.11), (3.12) and (3.14) in equation (9.2), we get

$$
\begin{align*}
g(R(X, Y) Z, U) & =\frac{1}{(n-2)}[S(Y, Z) g(X, U)-S(X, Z) g(Y, U) \tag{9.3}\\
& +g(Y, Z) g(Q X, U)-g(X, Z) g(Q Y, U)] \\
& -\frac{r}{(n-1)(n-2)}[g(Y, Z) g(X, U)-g(X, Z) g(Y, U)]
\end{align*}
$$

Putting $X=U=\xi$ in equation (9.3) and using (2.2), (2.3) and (2.4), we get

$$
\begin{align*}
g(R(\xi, Y) Z, \xi) & =\frac{1}{(n-2)}[\delta S(Y, Z)-\delta \eta(Y) S(\xi, Z) \tag{9.4}\\
& +g(Y, Z) S(\xi, \xi)-\delta \eta(Z) S(Y, \xi)] \\
& -\frac{r}{(n-1)(n-2)}[\delta g(Y, Z)-\eta(Y) \eta(Z)]
\end{align*}
$$

where $g(Q Y, Z)=S(Y, Z)$.

Now, using equations (2.13), (2.14) and (2.16), we get

$$
\begin{align*}
S(Y, Z) & =\left[\left(\delta\left(\alpha^{2}+\beta^{2}\right)-(\xi \beta)\right]+\frac{r}{(n-1)}\right] g(Y, Z) \tag{9.5}\\
& +\left[\delta(n-4)(\xi \beta)+n\left(\alpha^{2}+\beta^{2}\right)-\frac{\delta}{r}(n-1)\right] \eta(Y) \eta(Z) \\
& -[2 \delta \alpha \beta(n-2)+(n-2)(\xi \alpha)] g(\phi Y, Z) \\
& -[\delta(\phi Z) \alpha+\delta(Z \beta)(n-2)] \eta(Y)-[\delta(\phi Y) \alpha+\delta(n-2)(Y \beta)] \eta(Z) .
\end{align*}
$$

If $\alpha=0$ andd $\beta=$ constant in (7.6), we get

$$
\begin{equation*}
S(Y, Z)=\left[\delta \beta^{2}+\frac{r}{(n-1)}\right] g(Y, Z)+\left[n \beta^{2}-\frac{\delta r}{(n-1)}\right] \eta(Y) \eta(Z) . \tag{9.6}
\end{equation*}
$$

Therefore

$$
S(Y, Z)=a g(Y, Z)+b \eta(Y) \eta(Z),
$$

where $a=\left[\delta \beta^{2}+\frac{r}{(n-1)}\right]$ and $b=\left[n \beta^{2}-\frac{\delta r}{(n-1)}\right]$. This shows that M is an η-Einstein manifold. Thus we can state the following theorem:

Let M ba an n-dimensional Weyl conformally flat δ-Lorentzian trans-Sasakian manifold with respect to the semi-symmetric metric connection $\bar{\nabla}$ is an η-Einstein manifold if $\alpha=0$ and $\beta=$ constant. Now, taking equation (8.1)

$$
\begin{align*}
\bar{C}(X, Y) Z & =\bar{R}(X, Y) Z \tag{9.7}\\
& -\frac{1}{(n-2)}[\bar{S}(Y, Z) X-\bar{S}(X, Z) Y+g(Y, Z) \bar{Q} X-g(X, Z) \bar{Q} Y] \\
& +\frac{\bar{r}}{(n-1)(n-2)}[g(Y, Z) X-g(X, Z) Y] .
\end{align*}
$$

Using (2.20), (3.2), (3.11), (3.12) and (3.14) in equation (9.7), we get

$$
\begin{align*}
\bar{C}(X, Y) Z & =C(X, Y) Z+\delta[g(X, Z) Y-g(Y, Z) X] \tag{9.8}\\
& +(\delta+\beta)[\eta(X) g(Y, Z)-\eta(Y) g(X, Z)] \xi \\
& -(\beta \delta-1) \eta(Z)[\eta(Y) X-\eta(X) Y]+\alpha[g(\phi X, Z) Y \\
& -g(\phi, Z) X-g(Y, Z) \phi X+g(X, Z) \phi Y]+\frac{1}{(n-2)} \\
& (\beta \delta-1)(n-2) \eta(Y) \eta(Z)-((\delta)(n-2)+\beta) g(Y, Z) X \\
& +\alpha(n-2) g(\phi Y, Z) X+((\delta)(n-2)+\beta) g(X, Z) Y \\
& +(\beta \delta-1)(n-2) \eta(X) \eta(Z) Y-\alpha(n-2) g(\phi X, Z) Y \\
& -((\delta)(n-2)+\beta) g(Y, Z) X+(\beta+\delta)(n-2) g(Y, Z) \eta(X) \xi \\
& \alpha(n-2) g(Y, Z) \phi X+((\delta)(n-2)+\beta) g(X, Z) Y \\
& -(\beta+\delta)(n-2) g(X, Z) \eta(Y) \xi-\alpha(n-2) g(X, Z) \phi Y] \\
& -\frac{\beta+\delta+(n-2)}{(n-2)}[g(Y, Z) X-g(X, Z) Y] .
\end{align*}
$$

Let X and Y are orthogonal basis to ξ. Putting $Z=\xi$ and using (2.1), (2.2) and (2.4) in (9.8), we get

$$
\bar{C}(X, Y) \xi=C(X, Y) \xi
$$

Theorem 9.1. An n-dimensinal δ-Lorentzian trans-Sasakian manifold M is Weyl ξ-conformally flat with respect to the semi-symmetric metric connection if and only if the manifold is also Weyl ξ-conformally flat with respect to the metric connection provided that the vector fields are horizontal vector fields.

10. η-Ricci Solitons and Ricci Solitons in δ-Lorentzian Trans-Sasakian Manifold with a Semi-symmetric Metric Connection

Let M be 3-dimensional δ-Lorentzian trans-Sasakian manifold with a semisymmetric metric connection and V be pointwise collinear with ξ i.e. $V=b \xi$, where b is a function. Then consider the equation [9]

$$
\begin{equation*}
L_{V} g+2 \bar{S}+2 \lambda g+2 \mu \eta \otimes \eta=0 \tag{10.1}
\end{equation*}
$$

where L_{V} is the Lie derivative operator along the vector field V, \bar{S} is the Ricci curvature tensor field of the metric g and λ and μ are real constants. Then equation (10.1) implies,

$$
\begin{equation*}
g\left(\bar{\nabla}_{X} b \xi, Y\right)+g\left(\bar{\nabla}_{Y} b \xi, X\right)+2 \bar{S}(X, Y)+2 \lambda g(X, Y)+2 \mu \eta(X) \eta(Y)=0 \tag{10.2}
\end{equation*}
$$

or

$$
\begin{align*}
& b g\left(\bar{\nabla}_{X} \xi, Y\right)+(X b) \eta(Y)+b g\left(\bar{\nabla}_{Y} \xi, X\right)+(Y b) \eta(X) \tag{10.3}\\
& +2 \bar{S}(X, Y)+2 \lambda g(X, Y)+2 \mu \eta(X) \eta(Y)=0
\end{align*}
$$

Using (3.4) in (10.3), we get

$$
\begin{align*}
& b g[-(1+\delta \beta) X-(1+\delta \beta) \eta(X) \xi-\delta \alpha \phi X, Y]+(X b) \eta(Y) \tag{10.4}\\
& \quad+b g[-(1+\delta \beta) Y-(1+\delta \beta) \eta(Y) \xi-\delta \alpha \phi Y, X]+(Y b) \eta(X) \\
& \quad+2 \bar{S}(X, Y)+2 \lambda g(X, Y)+2 \mu \eta(X) \eta(Y)=0 \\
& -2 b(1+\delta \beta) g(X, Y)-2 b(1+\delta \beta) \eta(Y) \eta(X)+(X b) \eta(Y)+(Y b) \eta(X) \tag{10.5}\\
& +2 \bar{S}(X, Y)+2 \lambda g(X, Y)+2 \mu \eta(X) \eta(Y)=0
\end{align*}
$$

With the substitution of Y with ξ in (10.5) and using (3.21) for constants α and β, it follows that

$$
\begin{align*}
& (X b)+(\xi b) \eta(X)-4 b(1+\delta \beta) \eta(X) \tag{10.6}\\
& +2\left[2\left(\alpha^{2}+\beta^{2}-\delta(\xi \beta)\right)-2 \delta \beta\right] \eta(X) \\
& +2 \lambda \eta(X)+2 \mu \eta(X)=0
\end{align*}
$$

or

$$
\begin{gather*}
(X b)+(\xi b) \eta(X)+ \tag{10.7}\\
{\left[-4 b(1+\delta \beta)+2\left(2\left(\alpha^{2}+\beta^{2}-\delta(\xi \beta)\right)-2 \delta \beta+2 \lambda+2 \mu\right] \eta(X)=0\right.}
\end{gather*}
$$

Again replacing $X=\xi$ in (10.7), we obtain

$$
\begin{equation*}
\xi b=-\left[-2 b(1+\delta \beta)+\left(2\left(\alpha^{2}+\beta^{2}-\delta(\xi \beta)\right)-\delta \beta+\lambda+\mu\right]\right. \tag{10.8}
\end{equation*}
$$

Putting (10.8) in (10.7), we obtain

$$
\begin{equation*}
d b=\left[2 b(1+\delta \beta)-\left(2\left(\alpha^{2}+\beta^{2}-\delta(\xi \beta)\right)-\delta \beta-\lambda-\mu\right] \eta\right. \tag{10.9}
\end{equation*}
$$

By applying d on (10.9), we get

$$
\begin{equation*}
\left[2 b(1+\delta \beta)-\left(2\left(\alpha^{2}+\beta^{2}-\delta(\xi \beta)\right)-\delta \beta-\lambda-\mu\right] d \eta=0\right. \tag{10.10}
\end{equation*}
$$

Since $d \eta \neq 0$ from (10.10), we have

$$
\begin{equation*}
\left[2 b(1+\delta \beta)-\left(2\left(\alpha^{2}+\beta^{2}-\delta(\xi \beta)\right)-\delta \beta-\lambda-\mu\right]=0\right. \tag{10.11}
\end{equation*}
$$

By using (10.9) and (10.11), we obtain that b is a constant. Hence from (10.5) it is verified

$$
\begin{equation*}
\bar{S}(X, Y)=[b(1+\delta \beta)-\lambda] g(X, Y)+[b(1+\delta \beta)-\mu] \eta(X) \eta(Y) \tag{10.12}
\end{equation*}
$$

which implies that M is an η-Einstien manifold. This lead to the following:
Theorem 10.1. In a 3-dimensional δ-Lorentzian trans-Sasakian manifold with a semi-symmetric metric connection, the metric g is an η-Ricci soliton and V is a positive collinear with ξ, then V is a constant multiple of ξ and g is an η-Einstien manifold of the form (10.12) and η-Ricci soliton is expanding or shrinking according as the following relation is positive and negative

$$
\begin{equation*}
\lambda=-\left[2 b(1+\delta \beta)-\left(2\left(\alpha^{2}+\beta^{2}-\delta(\xi \beta)\right)-\delta \beta-\mu\right]\right. \tag{10.13}
\end{equation*}
$$

For $\mu=0$, we deduce equation (10.12)

$$
\begin{equation*}
\bar{S}(X, Y)=[b(1+\delta \beta)-\lambda] g(X, Y)+[b(1+\delta \beta)] \eta(X) \eta(Y) \tag{10.14}
\end{equation*}
$$

Now, we have the following corollary:
Corollary 10.1. In a 3 -dimensional δ-Lorentzian trans-Sasakian manifold with a semi-symmetric metric connection, the metric g is a Ricci soliton and V is a positive collinear with ξ, then V is a constant multiple of ξ and g is an η-Einstien manifold and Ricci soliton is shrinking according as the following relation is negative. For $\mu=0$, (10.13) reduce to

$$
\begin{equation*}
\lambda=-\left[2 b(1+\delta \beta)-\left(2\left(\alpha^{2}+\beta^{2}-\delta(\xi \beta)\right)-\delta \beta\right]\right. \tag{10.15}
\end{equation*}
$$

Here is an example of η-Ricci soliton on δ-Lorentzian trans-Sasakian manifold with a semi-symmetric metric connection.
Example 10.1. We consider the three dimensional manifold $M=\left[(x, y, z) \in \mathbb{R}^{3} \mid\right.$ $z \neq 0]$, where (x, y, z) are the Cartesian coordinates in \mathbb{R}^{3}. Choosing the vector fields

$$
e_{1}=z \frac{\partial}{\partial x}, \quad e_{2}=z \frac{\partial}{\partial y}, \quad e_{3}=-z \frac{\partial}{\partial z},
$$

which are linearly independent at each point of M. Let g be the Riemannian metric define by

$$
g\left(e_{1}, e_{3}\right)=g\left(e_{2}, e_{3}\right)=g\left(e_{2}, e_{2}\right)=0, \quad g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=\delta,
$$

where $\delta= \pm 1$. Let η be the 1 -form defined by $\eta(Z)=\epsilon g\left(Z, e_{3}\right)$ for any vector field Z on $T M$. Let ϕ be the $(1,1)$ tensor field defined by $\phi\left(e_{1}\right)=-e_{2}, \quad \phi\left(e_{2}\right)=$ $e_{1}, \quad \phi\left(e_{3}\right)=0$. Then by the linearity property of ϕ and g, we have

$$
\phi^{2} Z=Z+\eta(Z) e_{3}, \quad \eta\left(e_{3}\right)=1 \text { and } g(\phi Z, \phi W)=g(Z, W)-\delta \eta(Z) \eta(W)
$$

for any vector fields Z, W on M.
Let ∇ be the Levi-Civita connection with respect to the metric g. Then we have

$$
\left[e_{1}, e_{2}\right]=0, \quad\left[e_{1}, e_{3}\right]=\delta e_{1}, \quad\left[e_{2}, e_{3}\right]=\delta e_{2} .
$$

The Riemannian connection ∇ with respect to the metric g is given by

$$
\begin{aligned}
2 g\left(\nabla_{X} Y, Z\right) & =X g(Y, Z)+Y g(Z, X)-Z g(X, Y) \\
& +g([X, Y], Z)-g([Y, Z], X)+g([Z, X], Y) .
\end{aligned}
$$

From above equation which is known as Koszul's formula, we have

$$
\begin{array}{lll}
\nabla_{e_{1}} e_{3}=\delta e_{1}, & \nabla_{e_{2}} e_{3}=\delta e_{2}, & \nabla_{e_{3}} e_{3}=0, \tag{10.16}\\
\nabla_{e_{1}} e_{2}=0, & \nabla_{e_{2}} e_{2}=-\delta e_{3}, & \nabla_{e_{3} e_{2}}=0, \\
\nabla_{e_{1}} e_{1}=-\delta e_{3}, & \nabla_{e_{2}} e_{1}=0, & \nabla_{e_{3}} e_{1}=0 .
\end{array}
$$

Using the above relations, for any vector field X on M, we have

$$
\nabla_{X} \xi=\delta(X-\eta(X) \xi)
$$

for $\xi \in e_{3}, \alpha=0$ and $\beta=1$. Hence the manifold M under consideration is an δ-Lorentzian trans Sasakian of type $(0,1)$ manifold of dimension three.

Now, we consider this example for semi-symmetric metric connection from (2.9) and (10.14), we obtain:

$$
\begin{array}{lll}
\bar{\nabla}_{e_{1}} e_{3}=(1+\delta) e_{1}, & \bar{\nabla}_{e_{2}} e_{3}=(1+\delta) e_{2}, & \bar{\nabla}_{e_{3}} e_{3}=0, \tag{10.17}\\
\bar{\nabla}_{e_{1}} e_{2}=0, & \bar{\nabla}_{e_{2}} e_{2}=-(1+\delta) e_{3}, & \bar{\nabla}_{e_{3} e_{2}}=0, \\
\bar{\nabla}_{e_{1}} e_{1}=-(1+\delta) e_{3}, & \bar{\nabla}_{e_{2}} e_{1}=0, & \bar{\nabla}_{e_{3}} e_{1}=0 .
\end{array}
$$

Then the Riemannian and the Ricci curvature tensor fields with respect to the semi-symmetric metric connection are given by:

$$
\begin{array}{cl}
\bar{R}\left(e_{1}, e_{2}\right) e_{2}=-(1+\delta)^{2} e_{1}, & \bar{R}\left(e_{1}, e_{3}\right) e_{3}=-\delta(1+\delta) e_{2}, \\
\bar{R}\left(e_{2}, e_{3}\right) e_{3}=-\delta(1+\delta) e_{2}, & \bar{R}\left(e_{2}, e_{1}\right) e_{1}=-(1+\delta)^{2} e_{2} \\
\bar{S}\left(e_{1}, e_{1}\right)=\delta(1+\delta) e_{3}, & \bar{R}\left(e_{3}, e_{2}\right) e_{2}=-\delta(1+\delta) e_{3} \\
\bar{S}\left(e_{2}, e_{2}\right)=-(1+\delta)(1+2 \delta), & \bar{S}\left(e_{3}, e_{3},\right)=2 \delta(1+\delta)
\end{array}
$$

From (10.14), for $\lambda=\frac{(1+\delta)^{2}}{\delta}$ and $\mu=-(1+\delta)(1+3 \delta)$, the data (g, ξ, λ, μ) is an η-Ricci soliton on (M, ϕ, ξ, η, g) which is expanding.

References

[1] A. M. Blaga, η-Ricci solitons on Lorentzian para-Sasakian manifolds, Filomat, 30(2)(2016), 489-496.
[2] A. M. Blaga, η-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl., 20(2015), 1-13.
[3] A. M. Blaga, S. Y. Perktas, B. L. Acet and F. E. Erdogan, η-Ricci solitons in (ε)almost para contact metric manifolds, Glas. Mat. Ser. III, 53(2018), 205--220.
[4] C. S. Bagewadi and G. Ingalahalli, Ricci Solitons in Lorentzian α-Sasakian Manifolds, Acta Math. Acad. Paedagog. Nyhzi.(N.S.), 28(1)(2012), 59-68.
[5] E. Bartolotti, Sulla geometria della variata a connection affine. Ann. di Mat., 4(8)(1930), 53-101.
[6] A. Bejancu and K. L. Duggal, Real hypersurfaces of indefinite Kaehler manifolds, Internet. J. Math. Math. Sci., 16(1993), 545-556.
[7] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture note in Mathematics 509, Springer-Verlag, Berlin-New York, 1976.
[8] S. M. Bhati, On weakly Ricci ϕ-symmetric δ-Lorentzian trans Sasakian manifolds, Bull. Math. Anal. Appl., 5 (1)(2013), 36-43.
[9] J. T. Cho and M. Kimura, Ricci solitons and Real hypersurfaces in a complex space form, Tohoku math.J., 61(2009), 205-212.
[10] O. Chodosh, F. T. H. Fong, Rotational symmetry of conical Kahler-Ricci solitons, Math. Ann., 364(2016), 777-792.
[11] U. C. De and A. Sarkar, On (ε)-Kenmotsu manifolds, Hadronic J., 32(2)(2009), 231-242.
[12] U. C. De and A. Sarkar, On three-dimensional Trans-Sasakian Manifolds, Extracta Math., 23(2008), 265-277.
[13] A. Friedmann and J. Schouten, Uber die Geometric der halbsymmetrischen, Ubertragung, Math. Z., 21(1924), 211-223.
η-Ricci Solitons in δ-Lorentzian Trans Sasakian Manifolds
[14] A. Gray and L. M. Harvella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl., 123(4)(1980), 35-58.
[15] H. Gill and K. K. Dube, Generalized CR-Submanifolds of a trans Lorentzian para Sasakian manifold, Proc. Nat. Acad. Sci. India Sec. A Phys. Sci., 76(2006), 119-124.
[16] H. A. Hayden, Sub-spaces of a space with torsion, Proc. London Math. Soc., 34(1932), 27-50.
[17] I. E. Hirica and L. Nicolescu, Conformal connections on Lyra manifolds, Balkan J. Geom. Appl., 13(2008), 43-49.
[18] I. E. Hirica and L. Nicolescu, On Weyl structures, Rend. Circ. Mat. Palermo (2), 53(2004), 390-400.
[19] R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz. CA, 1986), 237-262, Contemp. Math. 71, Amer. Math. Soc., Providence, RI, 1988.
[20] T. Ikawa and M. Erdogan, Sasakian manifolds with Lorentzian metric, Kyungpook Math. J., 35(1996), 517-526.
[21] J. B. Jun, U. C. De and G. Pathak, On Kenmotsu manifolds, J. Korean Math. Soc., 42(3)(2005), 435-445.
[22] H. Levy, Symmetric tensors of the second order whose covariant derivatives vanish, Ann. Math., 27(2)(1925), 91-98.
[23] J. C. Marrero, The local structure of Trans-Sasakian manifolds, Ann. Mat. Pura Appl., 162(1992), 77-86.
[24] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci., 12(1989), 151-156.
[25] H. G. Nagaraja and C.R. Premalatha, Ricci solitons in Kenmotsu manifolds, J. Math. Anal., 3 (2)(2012), 18-24.
[26] J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen, 32(1985), 187-193.
[27] G. Pathak and U. C. De, On a semi-symmetric metric connection in a Kenmotsu manifold, Bull. Calcutta Math. Soc., 94(4)(2002), 319-324.
[28] S. S. Pujar and V. J. Khairnar, On Lorentzian trans-Sasakian manifold-I, Int. J. of Ultra Sciences of Physical Sciences, 23(1)(2011), 53-66.
[29] S. S. Pujar, On Lorentzian Sasakian manifolds, Antactica J. Math., 8(2012), 30-38.
[30] R. Sharma, Certain results on K-contact and (k, μ)-contact manifolds, J. Geom., 89(1-2)(2008), 138-147.
[31] A. Sharfuddin and S. I. Hussain, Semi-symmetric metric connections in almost contact manifolds, Tensor (N.S.), 30(1976), 133-139.
[32] S. S. Shukla and D. D. Singh, On (ε)-trans-Sasakian manifolds, Int. J. Math. Anal., 4(49-52) (2010), 2401-2414.
[33] M. D. Siddiqi, A. Haseeb and M. Ahmad, On generalized Ricci-recurrent (ε, δ)-transSasakian manifolds, Palest. J. Math., 4(1)(2015), 156-163.
[34] M. M. Tripathi, On a semi-symmetric metric connection in a Kenmotsu manifold, J. Pure Math., 16(1999), 67-71.
[35] M. M. Tripathi, E. Kilic, S. Y. Perktas and S. Keles, Indefnite almost para-contact metric manifolds, Int. J. Math. Math. Sci., (2010), Art. ID 846195, 19 pp.
[36] T. Takahashi, Sasakian manifold with Pseudo-Riemannian metric, Tohoku Math. J., 21(1969), 271-290.
[37] S. Tanno, The automorphism groups of almost contact Riemannian manifolds, Tohoku Math. J., 21(1969), 21-38.
[38] K. Venu and H.G. Nagaraja, η-Ricci solitons in trans-Sasakian manifolds, Commun. Fac. sci. Univ. Ank. Ser. A1 Math. Stat., 66 (2)(2017), 218-224.
[39] X. Xufeng and C. Xiaoli, Two theorems on ε-Sasakian manifolds, Internat. J. Math. Math. Sci., 21(1998), 249-254.
[40] A. F. Yaliniz, A. Yildiz and M. Turan, On three-dimensional Lorentzian β - Kenmotsu manifolds, Kuwait J. Sci. Engrg., 36(2009), 51-62.
[41] A. Yildiz, M. Turan, M. and C. Murathan, A class of Lorentzian α-Sasakian manifolds, Kyungpook Math. J., 49(2009), 789 -799.
[42] K. Yano, On semi-symmetric metric connections, Rev. Roumaine Math. Pures Appl., 15(1970), 1579-1586.
[43] K. Yano and M. Kon, Structures on Manifolds, Series in Pure Mathematics 3, World Scientific Publishing, Singapore, 1984.

