• 제목/요약/키워드: quadratic function equation

검색결과 115건 처리시간 0.025초

블럭펄스 함수를 이용한 확률시스템의 제어기 설계 (Controller Design of the Nonlinear Stochastic System using Block Pulse Function)

  • 임윤식;이재춘;이명규;안두수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.584-586
    • /
    • 1997
  • The orthogonal polynomials have been widely employed to solve control problems, but the LQG(linear quadratic gaussian) problem remains unsolved. In this paper, we obtained the solutions of Riccati equation and covariance matrix Riccati equation by two point boundary problem and matrix fraction method using BPF(Block Pulse Function), respectively. This solutions are solved the problem of the LQG controller design.

  • PDF

LQ 제어와 근의 이동범위를 이용한 조단 블록을 갖는 중근을 두 실근으로 이동시키는 극배치 방법 (Pole Placement Method to Move a Equal Poles with Jordan Block to Two Real Poles Using LQ Control and Pole's Moving-Range)

  • 박민호
    • 한국산학기술학회논문지
    • /
    • 제19권2호
    • /
    • pp.608-616
    • /
    • 2018
  • 일반적으로 비선형 시스템은 1차와 2차 시스템의 곱의 형태로 선형화되며, 시스템의 근은 1차 시스템의 근과 2차 시스템의 중근, 서로 다른 두 실근, 복소근으로 구성된다. 그리고 LQ(Linear Quadratic) 제어는 성능지수함수를 최소화하는 제어법칙을 설계하는 방법으로 시스템의 안정성을 보장하는 장점과 가중행렬 조정으로 시스템의 근의 위치를 조정하는 극배치 기능이 있다. 가중행렬에 의해 LQ 제어는 시스템의 근의 위치를 임의로 이동시킬 수 있지만 시행착오 방법으로 가중행렬을 설정하는 어려움이 있다. 이것은 해밀토니안(Hamiltonian) 시스템의 특성방정식을 이용하여 해결 할 수 있다. 또한 제어가중행렬이 상수의 대칭행렬이면 제어법칙을 반복적으로 적용하여 시스템의 여러 근을 원하는 폐루프 근으로 이동시킬 수 있다. 이 논문은 해밀토니안 시스템의 특성방정식을 이용하여 조단 블록을 갖는 시스템의 중근을 두 실근으로 이동시키는 상태가중행렬과 제어법칙을 계산하는 방법을 제시한다. 삼각함수로 표현된 상태가중행렬로 해밀토니안 시스템의 특성방정식을 구한다. 그리고 이동된 두 실근이 특성방정식의 근이라는 조건에서 중근과 상태가중행렬의 관계식(${\rho},\;{\theta}$)을 유도한다. 상태가중행렬이 양의 반한정행렬이 될 조건에서 중근의 이동범위를 구한다. 그리하여 이동범위에서 선택한 두 실근을 관계식에 대입하여 상태가중행렬과 제어법칙을 계산한다. 제안한 방법을 간단한 3차 시스템의 예제에 적용해본다.

송풍기 설계를 위한 수치최적설계기법의 응용 (Application of Numerical Optimization Technique to the Design of Fans)

  • 김광용;최재호;김태진;류호선
    • 설비공학논문집
    • /
    • 제7권4호
    • /
    • pp.566-576
    • /
    • 1995
  • A Computational code has been developed in order to design axial fans by the numerical optimization techniques incorporated with flow analysis code solving three-dimensional Navier-Stokes equation. The steepest descent method and the conjugate gradient method are used to look for the search direction in the design space, and the golden section method is used for one-dimensional search. To solve the constrained optimization problem, sequential unconstrained minimization technique, SUMT, is used with imposed quadratic extended interior penalty functions. In the optimization of two-dimensional cascade design, the ratio of drag coefficient to lift coefficient is minimized by the design variables such as maximum thickness, maximum ordinate of camber and chord wise position of maximum ordinate. In the application of this numerical optimization technique to the design of an axial fan, the efficiency is maximized by the design variables related to the sweep angle distributed by quadratic function along the hub to tip of fan.

  • PDF

퍼지 활성 노드를 가진 퍼지 다항식 뉴럴 네트워크 (Fuzzy Polynomial Neural Networks with Fuzzy Activation Node)

  • 박호성;김동원;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2946-2948
    • /
    • 2000
  • In this paper, we proposed the Fuzzy Polynomial Neural Networks(FPNN) model with fuzzy activation node. The proposed FPNN structure is generated from the mutual combination of PNN(Polynomial Neural Networks) structure and fuzzy inference system. The premise of fuzzy inference rules defines by triangular and gaussian type membership function. The fuzzy inference method uses simplified and regression polynomial inference method which is based on the consequence of fuzzy rule expressed with a polynomial such as linear, quadratic and modified quadratic equation are used. The structure of FPNN is not fixed like in conventional Neural Networks and can be generated. The design procedure to obtain an optimal model structure utilizing FPNN algorithm is shown in each stage. Gas furnace time series data used to evaluate the performance of our proposed model.

  • PDF

Riccati Equation Approach to $\textrm{H}_\infty$ Robust Performance Problem for Descriptor Form System

  • Shen, Tielong;Tamura, Katsutoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.95-99
    • /
    • 1993
  • In this paper, we discuss H$_{\infty}$ robust performance problem for uncertain system described in a descriptor form. We show that the method based on Riccati equation can be extended to solve this problem. First, such a sufficient condition is given that the system described in a descriptor form is quadratic stable and H$_{\infty}$ norm of a specified transfer function is less than a given level. Using this result, a state feedback law which ensures H$_{\infty}$ robust performance of closed loop system is derived based on a positive definite solution of a Riccati equation. This result shows that a solution of the problem can be also obtained by solving H$_{\infty}$ standard problem for an extended plant. Finally, a design example and simulation results will be given.ven.

  • PDF

QLQG/$H_{\infty}$ 제어를 이용한 다변수 하드비선형 제어기 설계 (Design of the multivariable hard nonlinear controller using QLQG/$H_{\infty}$ control)

  • 한성익;김종식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.81-84
    • /
    • 1996
  • We propose the robust nonlinear controller design methodology, the $H_{\infty}$ constrained quasi - linear quadratic Gaussian control (QLQG/ $H_{\infty}$), for the statistically-linearized multivariable system with hard nonlinearties such as Coulomb friction, deadzone, etc. The $H_{\infty}$ performance constraint is involved in the optimization process by replacing the covariance Lyapunov equation with the Riccati equation whose solution leads to an upper bound of the QLQG performance. Because of the system's nonlinearity, however, one equation among three Riccati equations contain the nonlinear correction terms that are very difficult to solve numerically. To treat this problem, we use simple algebraic techniques. With some analytic transformation for Riccati equations, the nonlinear correction terms can be so eliminated that the set of a linear controller to the different operating points are designed. Synthesizing these via inverse random input describing function (IRIDF) technique, the final nonlinear controller can be designed.

  • PDF

멀티레이트 LQG 제어 기법의 성능 비교 분석 (Performance Analysis of Multirate LQG Control)

  • 이진우;오준호
    • 제어로봇시스템학회논문지
    • /
    • 제5권2호
    • /
    • pp.123-130
    • /
    • 1999
  • In discrete-time controlled system, sampling time is one of the critical parameters for control performance. It is useful to employ different sampling rates into the system considering the feasibility of measuring system or actuating system. The systems with the different sampling rates in their input and output channels are named multirate system. Even though the original continuous-time system is time-invariant, it is realized as time-varying state equation depending on multirate sampling mechanism. By means of the augmentation of the inputs and the outputs over one period, the time-varying system equation can be constructed into the time-invariant equation. The two multirate formulations have some trade-offs in the simplicity to construct the controller, the control performance. It is good issue to determine the suitable formulation in consideration of performance of them. In this paper, the two categories of multirate formulations will be compared in terms of the linear quadratic (LQ) cost function. The results are used to select the multirate formulation and the sampling rates suitable to the desired control performance.

  • PDF

알루미늄 합금박판 비등온 성형공정의 유한요소 해석 및 실험적 연구 (제2부:해석) (Finite Element Analysis and Experimental Investigation of Non-isothermal Forming Processes for Aluminum-Alloy Sheet Metals (Part2:Analysis))

  • 김성민;구본영;금영탁;김종호
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.252-261
    • /
    • 1999
  • The 3-dimensional finite element program is developed to analyze the non-isothermal forming processes of aluminum-alloy sheet metals. Bishop's method is introduced to solve the heat balance and force equilibrium equations. Also, Barlat's non-quadratic anisotropic yield function depicts the planar anisotropy of the aluminum-alloy sheet. To find an appropriate constitutive equation, four different forms are reviewed. For the verification of the reliability of the developed program, the computational try-outs of the non-isothermal cylindrical cupping processes of AL5052-H32 and Al1050-H16 are carried out. As results, the constitutive equation relating to strain and strain-rate, in which the constants are represented by the 5th-degree polynomials of temperature, is in good agreement with measurement. The computational try-outs can predict optimal forming conditions in non-isothermal forming processes.

  • PDF

THE METHOD OF QUASILINEARIZATION AND A THREE-POINT BOUNDARY VALUE PROBLEM

  • Eloe, Paul W.;Gao, Yang
    • 대한수학회지
    • /
    • 제39권2호
    • /
    • pp.319-330
    • /
    • 2002
  • The method of quasilinearization generates a monotone iteration scheme whose iterates converge quadratically to a unique solution of the problem at hand. In this paper, we apply the method to two families of three-point boundary value problems for second order ordinary differential equations: Linear boundary conditions and nonlinear boundary conditions are addressed independently. For linear boundary conditions, an appropriate Green\`s function is constructed. Fer nonlinear boundary conditions, we show that these nonlinearities can be addressed similarly to the nonlinearities in the differential equation.

역함수와의 교점을 구하는 과제에 대한 분석 (Analysis of the Tasks to Find Intersection Points of a Function and Its Inverse Function)

  • 허남구
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제55권3호
    • /
    • pp.335-355
    • /
    • 2016
  • The purpose of this study is to analyze tasks to find intersection points of a function and its inverse function. To do this, we produced a task and 64 people solved the task. As a result, most people had a cognitive conflict related to inverse function. Because of over-generalization, most people regarded intersection points of a function and y=x as intersection points of a function and its inverse. To find why they used the method to find intersection points, we investigated 10 mathematics textbooks. As a result, 23 tasks were related a linear function, quadratic function, or irrational function. 21 tasks were solved by using an equation f(x)=x. 3 textbooks presented that a set of intersection points of a function and its inverse was not equal to a set of intersection points of a function and y=x. And there was no textbook to present that a set of intersection points of a function and its inverse was equal to a set of intersection points of $y=(f{\circ}f)(x)$ and y=x.