• Title/Summary/Keyword: pseudomonotone equilibrium problem

Search Result 9, Processing Time 0.02 seconds

Halpern Subgradient Method for Pseudomonotone Equilibrium Problems in Hilbert Space

  • Thang, Tran Van;Khoa, Nguyen Minh
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.533-555
    • /
    • 2022
  • In this paper, we introduce a new algorithm for finding a solution of an equilibrium problem in a real Hilbert space. Our paper extends the single projection method to pseudomonotone variational inequalities, from a 2018 paper of Shehu et. al., to pseudomonotone equilibrium problems in a real Hilbert space. On the basis of the given algorithm for the equilibrium problem, we develop a new algorithm for finding a common solution of a equilibrium problem and fixed point problem. The strong convergence of the algorithm is established under mild assumptions. Several of fundamental experiments in finite (infinite) spaces are provided to illustrate the numerical behavior of the algorithm for the equilibrium problem and to compare it with other algorithms.

APPROXIMATE PROJECTION ALGORITHMS FOR SOLVING EQUILIBRIUM AND MULTIVALUED VARIATIONAL INEQUALITY PROBLEMS IN HILBERT SPACE

  • Khoa, Nguyen Minh;Thang, Tran Van
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.1019-1044
    • /
    • 2022
  • In this paper, we propose new algorithms for solving equilibrium and multivalued variational inequality problems in a real Hilbert space. The first algorithm for equilibrium problems uses only one approximate projection at each iteration to generate an iteration sequence converging strongly to a solution of the problem underlining the bifunction is pseudomonotone. On the basis of the proposed algorithm for the equilibrium problems, we introduce a new algorithm for solving multivalued variational inequality problems. Some fundamental experiments are given to illustrate our algorithms as well as to compare them with other algorithms.

WEAK AND STRONG CONVERGENCE OF SUBGRADIENT EXTRAGRADIENT METHODS FOR PSEUDOMONOTONE EQUILIBRIUM PROBLEMS

  • Hieu, Dang Van
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.879-893
    • /
    • 2016
  • In this paper, we introduce three subgradient extragradient algorithms for solving pseudomonotone equilibrium problems. The paper originates from the subgradient extragradient algorithm for variational inequalities and the extragradient method for pseudomonotone equilibrium problems in which we have to solve two optimization programs onto feasible set. The main idea of the proposed algorithms is that at every iterative step, we have replaced the second optimization program by that one on a specific half-space which can be performed more easily. The weakly and strongly convergent theorems are established under widely used assumptions for bifunctions.

MODIFIED SUBGRADIENT EXTRAGRADIENT ALGORITHM FOR PSEUDOMONOTONE EQUILIBRIUM PROBLEMS

  • Dang, Van Hieu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1503-1521
    • /
    • 2018
  • The paper introduces a modified subgradient extragradient method for solving equilibrium problems involving pseudomonotone and Lipschitz-type bifunctions in Hilbert spaces. Theorem of weak convergence is established under suitable conditions. Several experiments are implemented to illustrate the numerical behavior of the new algorithm and compare it with a well known extragradient method.

FIXED POINT SOLUTION METHODS FOR SOLVING EQUILIBRIUM PROBLEMS

  • Anh, Pham Ngoc;Hien, Nguyen Duc
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.479-499
    • /
    • 2014
  • In this paper, we propose new iteration methods for finding a common point of the solution set of a pseudomonotone equilibrium problem and the solution set of a monotone equilibrium problem. The methods are based on both the extragradient-type method and the viscosity approximation method. We obtain weak convergence theorems for the sequences generated by these methods in a real Hilbert space.

Weak and Strong Convergence of Hybrid Subgradient Method for Pseudomonotone Equilibrium Problems and Nonspreading-Type Mappings in Hilbert Spaces

  • Sriprad, Wanna;Srisawat, Somnuk
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.1
    • /
    • pp.83-99
    • /
    • 2019
  • In this paper, we introduce a hybrid subgradient method for finding an element common to both the solution set of a class of pseudomonotone equilibrium problems, and the set of fixed points of a finite family of ${\kappa}$-strictly presudononspreading mappings in a real Hilbert space. We establish some weak and strong convergence theorems of the sequences generated by our iterative method under some suitable conditions. These convergence theorems are investigated without the Lipschitz condition for bifunctions. Our results complement many known recent results in the literature.

Strong Convergence of a Bregman Projection Method for the Solution of Pseudomonotone Equilibrium Problems in Banach Spaces

  • Olawale Kazeem Oyewole;Lateef Olakunle Jolaoso;Kazeem Olalekan Aremu
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.1
    • /
    • pp.69-94
    • /
    • 2024
  • In this paper, we introduce an inertial self-adaptive projection method using Bregman distance techniques for solving pseudomonotone equilibrium problems in reflexive Banach spaces. The algorithm requires only one projection onto the feasible set without any Lipschitz-like condition on the bifunction. Using this method, a strong convergence theorem is proved under some mild conditions. Furthermore, we include numerical experiments to illustrate the behaviour of the new algorithm with respect to the Bregman function and other algorithms in the literature.

A NEW EXPLICIT EXTRAGRADIENT METHOD FOR SOLVING EQUILIBRIUM PROBLEMS WITH CONVEX CONSTRAINTS

  • Muangchoo, Kanikar
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.1-22
    • /
    • 2022
  • The purpose of this research is to formulate a new proximal-type algorithm to solve the equilibrium problem in a real Hilbert space. A new algorithm is analogous to the famous two-step extragradient algorithm that was used to solve variational inequalities in the Hilbert spaces previously. The proposed iterative scheme uses a new step size rule based on local bifunction details instead of Lipschitz constants or any line search scheme. The strong convergence theorem for the proposed algorithm is well-proven by letting mild assumptions about the bifunction. Applications of these results are presented to solve the fixed point problems and the variational inequality problems. Finally, we discuss two test problems and computational performance is explicating to show the efficiency and effectiveness of the proposed algorithm.

TWO STEP ALGORITHM FOR SOLVING REGULARIZED GENERALIZED MIXED VARIATIONAL INEQUALITY PROBLEM

  • Kazmi, Kaleem Raza;Khan, Faizan Ahmad;Shahza, Mohammad
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.675-685
    • /
    • 2010
  • In this paper, we consider a new class of regularized (nonconvex) generalized mixed variational inequality problems in real Hilbert space. We give the concepts of partially relaxed strongly mixed monotone and partially relaxed strongly $\theta$-pseudomonotone mappings, which are extension of the concepts given by Xia and Ding [19], Noor [13] and Kazmi et al. [9]. Further we use the auxiliary principle technique to suggest a two-step iterative algorithm for solving regularized (nonconvex) generalized mixed variational inequality problem. We prove that the convergence of the iterative algorithm requires only the continuity, partially relaxed strongly mixed monotonicity and partially relaxed strongly $\theta$-pseudomonotonicity. The theorems presented in this paper represent improvement and generalization of the previously known results for solving equilibrium problems and variational inequality problems involving the nonconvex (convex) sets, see for example Noor [13], Pang et al. [14], and Xia and Ding [19].