1 |
D.V. Hieu, Halpern subgradient extragradient method extended to equilibrium problems, Revista de la Real Academia de Ciencias Exactas, Fisicasy Naturales. Serie A. Matematicas, 111(3) (2016), 823-840, doi.org/10.1007/s13398-016-0328-9.
DOI
|
2 |
G. Korpelevich, The extragradient method for finding saddle points and other problems, Matecon, 12 (1976), 747-756.
|
3 |
J.K. Kim and Salahuddin, Existence of solutios for multi-valued equilibrium problems, Nonlinear Funct. Anal. Appl., 23(4) (2018), 779-795, doi.org/10.22771/nfaa.2018.23.04.14.
DOI
|
4 |
J.K. Kim, M.I. Bhat and S. Shafi, Convergence and stability of iterative algorithm of system of generalized implicit variational-like inclusion problems using (θ, ϕ, γ)-relaxed cocoercivity, Nonlinear Funct. Anal. Appl., 26(4) (2021), 749-780, doi.org/10.22771/nfaa.2021.26.04.07.
DOI
|
5 |
I. Konnov, Equilibrium models and variational inequalities, Elsevier, New York, 2007.
|
6 |
E. Kreyszig, Introductory Functional Analysis with Applications, Wiley Classics Library, Wiley, New York, 1989.
|
7 |
D.Q. Tran, M.L. Dung and V.H. Nguyen, Extragradient algorithms extended to equilibrium problems, Opti., 57(6) (2008), 749-776, doi.org/10.1080/02331930601122876.
DOI
|
8 |
P.E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set Val. Anal., 16(7-8) (2008), 899-912, doi.org/10.1007/s11228-008-0102-z.
DOI
|
9 |
W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4(3) (1953), 506, doi.org/10.1090/s0002-9939-1953-0054846-3.
DOI
|
10 |
G. Mastroeni, On auxiliary principle for equilibrium problems, in Nonconvex Optimization and Its Applications, Springer US, (2003), 289-298, doi.org/10.1007/978-1-4613-0239-1_15.
DOI
|
11 |
K. Muangchoo, A viscosity type projection method for solving pseudomonotone variational inequalities, Nonlinear Funct. Anal. Appl., 26(2) (2021), 347-371, doi.org/10.22771/nfaa.2021.26.02.08.
DOI
|
12 |
M. Bianchi and S. Schaible, Generalized monotone bifunctions and equilibrium problems, J. Optim. Theory Appl., 90(1) (1996), 31-43, doi.org/10.1007/bf02192244.
DOI
|
13 |
A. Adamu, J. Deepho, A.H. Ibrahim and A.B. Abubakar, Approximation of zeros of sum of monotone mappings with applications to variational inequality and image restoration problems, Nonlinear Funct. Anal. Appl., 26(2) (2021), 411-432, doi.org/10.22771/nfaa.2021.26.02.12.
DOI
|
14 |
S. Agarwal, I. Uddin, N. Pakkaranang, N. Wairojjana and P. Cholamjiak, Convergence theorems of proximal type algorithm for a convex function and multivalued mappings in Hilbert spaces, Nonlinear Funct. Anal. Appl., 26(1) (2021), 1-11, doi.org/10.22771/nfaa.2021.26.01.01.
DOI
|
15 |
K. J. Arrow and G. Debreu, Existence of an equilibrium for a competitive economy, Econometrica, 22(3) (1954), 265-290, doi.org/10.2307/1907353.
DOI
|
16 |
H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books in Mathematics, Springer International Publishing, New York, 2017.
|
17 |
E. Blum, From optimization and variational inequalities to equilibrium problems, Math. Stud., 63(2) (1994), 123-145, doi.org/10.1016/0022-247x(67)90085-6.
DOI
|
18 |
F. Browder and W. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., 20(2) (1967), 197-228.
DOI
|
19 |
A.A. Cournot, Recherches sur les principes mathematiques de la theorie des richesses, Hachette, Paris, 1838.
|
20 |
S.D. Flam and A.S. Antipin, Equilibrium programming using proximal-like algorithms, Math. Program., 78(1) (1996), 29-41, doi.org/10.1007/bf02614504.
DOI
|
21 |
H. Rehman, P. Kumam, M. Ozdemir and I. Karahan, Two generalized nonmonotone explicit strongly convergent extragradient methods for solving pseudomonotone equilibrium problems and applications, Math. Comput. Simulation, 2021 (2021), doi.org/10.1016/j.matcom.2021.05.001.
DOI
|
22 |
H. Rehman, P. Kumam, Y.J. Cho, Y.I. Suleiman and W. Kumam, Modified popov's explicit iterative algorithms for solving pseudomonotone equilibrium problems, Optim. Methods Software, 36(1) (2020), 82-113, doi.org/10.1080/10556788.2020.1734805.
DOI
|
23 |
H. Rehman, P. Kumam, Q.L. Dong and Y.J. Cho, A modified self-adaptive extragradient method for pseudomonotone equilibrium problem in a real Hilbert space with applications, Math. Methods Appl. Sci., 44(5) (2020), 3527-3547, doi.org/10.1002/mma.6961.
DOI
|
24 |
H. Rehman, P. Kumam, A. Gibali and W. Kumam, Convergence analysis of a general inertial projection-type method for solving pseudomonotone equilibrium problems with applications, J. Inequal. Appl., 2021(1) (2021), 1-27, doi.org/10.1186/s13660-021-02591-1.
DOI
|
25 |
H.K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Aust. Math. Soc., 65(1) (2002), 109-113, doi.org/10.1017/s0004972700020116.
DOI
|
26 |
J.F. Nash, Equilibrium points in n-person games, Proc. Nat. Acad. Sci., 36(1) (1950), 48-49.
DOI
|
27 |
K. Muangchoo, H. Rehman and P. Kumam, Two strongly convergent methods governed by pseudo-monotone bi-function in a real Hilbert space with applications, J. Appl. Math. Comput., 67(1-2) (2021), 891-917, doi.org/10.1007/s12190-020-01470-0.
DOI
|
28 |
L. Muu and W. Oettli, Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal. TMA., 18(12) (1992), 1159-116, doi.org/10.1016/0362-546x(92)90159-c.
DOI
|
29 |
J. Nash, Non-cooperative games, Ann. Math., 54 (1951), 286-295.
DOI
|
30 |
O.K. Oyewole and O.T. Mewomo, Existence results for new generalized mixed equilibrium and fixed point problems in Banach spaces, Nonlinear Funct. Anal. Appl., 25(2) (2020), 273-301, doi.org/10.22771/nfaa.2020.25.02.06.
DOI
|
31 |
J.V. Tiel, Convex analysis: an introductory text, Wiley, New York, 1984.
|
32 |
H. Rehman, N.A. Alreshidi and K. Muangchoo, A new modified subgradient extragradient algorithm extended for equilibrium problems with application in fixed point problems, J. Nonlinear Convex Anal., 22(2) (2021), 421-439.
|
33 |
H. Rehman, P. Kumam, A.B. Abubakar and Y.J. Cho, The extragradient algorithm with inertial effects extended to equilibrium problems, Comput. Appl. Math., 39(2) (2020), doi.org/10.1007/s40314-020-1093-0.
DOI
|
34 |
H. Rehman, P. Kumam, I.K. Argyros and N.A. Alreshidi, Modified proximal-like extragradient methods for two classes of equilibrium problems in Hilbert spaces with applications, Comput. Appl. Math., 40(2) (2021), doi.org/10.1007/s40314-020-01385-3.
DOI
|
35 |
K. Muangchoo, H. Rehman and P. Kumam, Weak convergence and strong convergence of nonmonotonic explicit iterative methods for solving equilibrium problems, J. Nonlinear Convex Anal., 22(3) (2021), 663-681.
|
36 |
H. Rehman, P. Kumam, M. Shutaywi, N.A. Alreshidi and W. Kumam, Inertial optimization based two-step methods for solving equilibrium problems with applications in variational inequality problems and growth control equilibrium models, Energies, 13(12) (2020), 3292, doi.org/10.3390/en13123292.
DOI
|
37 |
P. Yordsorn, P. Kumam and H. Rehman, Modified two-step extragradient method for solving the pseudomonotone equilibrium programming in a real Hilbert space, Carpathian J. Math., 36(2) (2020), 313-330.
DOI
|
38 |
D.V. Hieu, J.J. Strodiot and L.D. Muu, Strongly convergent algorithms by using new adaptive regularization parameter for equilibrium problems, J. Comput. Appl. Math., 376 (2020), 112844, doi.org/10.1016/j.cam.2020.112844.
DOI
|
39 |
H. Rehman, P. Kumam, I.K. Argyros, M. Shutaywi and Z. Shah, Optimization based methods for solving the equilibrium problems with applications in variational inequality problems and solution of Nash equilibrium models, Mathematics, 8(5) (2020), 822, doi.org/10.3390/math8050822.
DOI
|
40 |
H. Rehman, P. Kumam, Y.J. Cho and P. Yordsorn, Weak convergence of explicit extragradient algorithms for solving equilibrium problems, J. Inequal. Appl., 2019 (2019), 1-25, doi.org/10.1186/s13660-019-2233-1.
DOI
|