Browse > Article
http://dx.doi.org/10.22771/nfaa.2022.27.01.01

A NEW EXPLICIT EXTRAGRADIENT METHOD FOR SOLVING EQUILIBRIUM PROBLEMS WITH CONVEX CONSTRAINTS  

Muangchoo, Kanikar (Faculty of Science and Technology Rajamangala University of Technology Phra Nakhon (RMUTP))
Publication Information
Nonlinear Functional Analysis and Applications / v.27, no.1, 2022 , pp. 1-22 More about this Journal
Abstract
The purpose of this research is to formulate a new proximal-type algorithm to solve the equilibrium problem in a real Hilbert space. A new algorithm is analogous to the famous two-step extragradient algorithm that was used to solve variational inequalities in the Hilbert spaces previously. The proposed iterative scheme uses a new step size rule based on local bifunction details instead of Lipschitz constants or any line search scheme. The strong convergence theorem for the proposed algorithm is well-proven by letting mild assumptions about the bifunction. Applications of these results are presented to solve the fixed point problems and the variational inequality problems. Finally, we discuss two test problems and computational performance is explicating to show the efficiency and effectiveness of the proposed algorithm.
Keywords
Pseudomonotone mapping; Tseng extragradient method; strong convergence; variational inequality problems; equilibrium problem;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 D.V. Hieu, Halpern subgradient extragradient method extended to equilibrium problems, Revista de la Real Academia de Ciencias Exactas, Fisicasy Naturales. Serie A. Matematicas, 111(3) (2016), 823-840, doi.org/10.1007/s13398-016-0328-9.   DOI
2 G. Korpelevich, The extragradient method for finding saddle points and other problems, Matecon, 12 (1976), 747-756.
3 J.K. Kim and Salahuddin, Existence of solutios for multi-valued equilibrium problems, Nonlinear Funct. Anal. Appl., 23(4) (2018), 779-795, doi.org/10.22771/nfaa.2018.23.04.14.   DOI
4 J.K. Kim, M.I. Bhat and S. Shafi, Convergence and stability of iterative algorithm of system of generalized implicit variational-like inclusion problems using (θ, ϕ, γ)-relaxed cocoercivity, Nonlinear Funct. Anal. Appl., 26(4) (2021), 749-780, doi.org/10.22771/nfaa.2021.26.04.07.   DOI
5 I. Konnov, Equilibrium models and variational inequalities, Elsevier, New York, 2007.
6 E. Kreyszig, Introductory Functional Analysis with Applications, Wiley Classics Library, Wiley, New York, 1989.
7 D.Q. Tran, M.L. Dung and V.H. Nguyen, Extragradient algorithms extended to equilibrium problems, Opti., 57(6) (2008), 749-776, doi.org/10.1080/02331930601122876.   DOI
8 P.E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set Val. Anal., 16(7-8) (2008), 899-912, doi.org/10.1007/s11228-008-0102-z.   DOI
9 W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4(3) (1953), 506, doi.org/10.1090/s0002-9939-1953-0054846-3.   DOI
10 G. Mastroeni, On auxiliary principle for equilibrium problems, in Nonconvex Optimization and Its Applications, Springer US, (2003), 289-298, doi.org/10.1007/978-1-4613-0239-1_15.   DOI
11 K. Muangchoo, A viscosity type projection method for solving pseudomonotone variational inequalities, Nonlinear Funct. Anal. Appl., 26(2) (2021), 347-371, doi.org/10.22771/nfaa.2021.26.02.08.   DOI
12 M. Bianchi and S. Schaible, Generalized monotone bifunctions and equilibrium problems, J. Optim. Theory Appl., 90(1) (1996), 31-43, doi.org/10.1007/bf02192244.   DOI
13 A. Adamu, J. Deepho, A.H. Ibrahim and A.B. Abubakar, Approximation of zeros of sum of monotone mappings with applications to variational inequality and image restoration problems, Nonlinear Funct. Anal. Appl., 26(2) (2021), 411-432, doi.org/10.22771/nfaa.2021.26.02.12.   DOI
14 S. Agarwal, I. Uddin, N. Pakkaranang, N. Wairojjana and P. Cholamjiak, Convergence theorems of proximal type algorithm for a convex function and multivalued mappings in Hilbert spaces, Nonlinear Funct. Anal. Appl., 26(1) (2021), 1-11, doi.org/10.22771/nfaa.2021.26.01.01.   DOI
15 K. J. Arrow and G. Debreu, Existence of an equilibrium for a competitive economy, Econometrica, 22(3) (1954), 265-290, doi.org/10.2307/1907353.   DOI
16 H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books in Mathematics, Springer International Publishing, New York, 2017.
17 E. Blum, From optimization and variational inequalities to equilibrium problems, Math. Stud., 63(2) (1994), 123-145, doi.org/10.1016/0022-247x(67)90085-6.   DOI
18 F. Browder and W. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., 20(2) (1967), 197-228.   DOI
19 A.A. Cournot, Recherches sur les principes mathematiques de la theorie des richesses, Hachette, Paris, 1838.
20 S.D. Flam and A.S. Antipin, Equilibrium programming using proximal-like algorithms, Math. Program., 78(1) (1996), 29-41, doi.org/10.1007/bf02614504.   DOI
21 H. Rehman, P. Kumam, M. Ozdemir and I. Karahan, Two generalized nonmonotone explicit strongly convergent extragradient methods for solving pseudomonotone equilibrium problems and applications, Math. Comput. Simulation, 2021 (2021), doi.org/10.1016/j.matcom.2021.05.001.   DOI
22 H. Rehman, P. Kumam, Y.J. Cho, Y.I. Suleiman and W. Kumam, Modified popov's explicit iterative algorithms for solving pseudomonotone equilibrium problems, Optim. Methods Software, 36(1) (2020), 82-113, doi.org/10.1080/10556788.2020.1734805.   DOI
23 H. Rehman, P. Kumam, Q.L. Dong and Y.J. Cho, A modified self-adaptive extragradient method for pseudomonotone equilibrium problem in a real Hilbert space with applications, Math. Methods Appl. Sci., 44(5) (2020), 3527-3547, doi.org/10.1002/mma.6961.   DOI
24 H. Rehman, P. Kumam, A. Gibali and W. Kumam, Convergence analysis of a general inertial projection-type method for solving pseudomonotone equilibrium problems with applications, J. Inequal. Appl., 2021(1) (2021), 1-27, doi.org/10.1186/s13660-021-02591-1.   DOI
25 H.K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Aust. Math. Soc., 65(1) (2002), 109-113, doi.org/10.1017/s0004972700020116.   DOI
26 J.F. Nash, Equilibrium points in n-person games, Proc. Nat. Acad. Sci., 36(1) (1950), 48-49.   DOI
27 K. Muangchoo, H. Rehman and P. Kumam, Two strongly convergent methods governed by pseudo-monotone bi-function in a real Hilbert space with applications, J. Appl. Math. Comput., 67(1-2) (2021), 891-917, doi.org/10.1007/s12190-020-01470-0.   DOI
28 L. Muu and W. Oettli, Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal. TMA., 18(12) (1992), 1159-116, doi.org/10.1016/0362-546x(92)90159-c.   DOI
29 J. Nash, Non-cooperative games, Ann. Math., 54 (1951), 286-295.   DOI
30 O.K. Oyewole and O.T. Mewomo, Existence results for new generalized mixed equilibrium and fixed point problems in Banach spaces, Nonlinear Funct. Anal. Appl., 25(2) (2020), 273-301, doi.org/10.22771/nfaa.2020.25.02.06.   DOI
31 J.V. Tiel, Convex analysis: an introductory text, Wiley, New York, 1984.
32 H. Rehman, N.A. Alreshidi and K. Muangchoo, A new modified subgradient extragradient algorithm extended for equilibrium problems with application in fixed point problems, J. Nonlinear Convex Anal., 22(2) (2021), 421-439.
33 H. Rehman, P. Kumam, A.B. Abubakar and Y.J. Cho, The extragradient algorithm with inertial effects extended to equilibrium problems, Comput. Appl. Math., 39(2) (2020), doi.org/10.1007/s40314-020-1093-0.   DOI
34 H. Rehman, P. Kumam, I.K. Argyros and N.A. Alreshidi, Modified proximal-like extragradient methods for two classes of equilibrium problems in Hilbert spaces with applications, Comput. Appl. Math., 40(2) (2021), doi.org/10.1007/s40314-020-01385-3.   DOI
35 K. Muangchoo, H. Rehman and P. Kumam, Weak convergence and strong convergence of nonmonotonic explicit iterative methods for solving equilibrium problems, J. Nonlinear Convex Anal., 22(3) (2021), 663-681.
36 H. Rehman, P. Kumam, M. Shutaywi, N.A. Alreshidi and W. Kumam, Inertial optimization based two-step methods for solving equilibrium problems with applications in variational inequality problems and growth control equilibrium models, Energies, 13(12) (2020), 3292, doi.org/10.3390/en13123292.   DOI
37 P. Yordsorn, P. Kumam and H. Rehman, Modified two-step extragradient method for solving the pseudomonotone equilibrium programming in a real Hilbert space, Carpathian J. Math., 36(2) (2020), 313-330.   DOI
38 D.V. Hieu, J.J. Strodiot and L.D. Muu, Strongly convergent algorithms by using new adaptive regularization parameter for equilibrium problems, J. Comput. Appl. Math., 376 (2020), 112844, doi.org/10.1016/j.cam.2020.112844.   DOI
39 H. Rehman, P. Kumam, I.K. Argyros, M. Shutaywi and Z. Shah, Optimization based methods for solving the equilibrium problems with applications in variational inequality problems and solution of Nash equilibrium models, Mathematics, 8(5) (2020), 822, doi.org/10.3390/math8050822.   DOI
40 H. Rehman, P. Kumam, Y.J. Cho and P. Yordsorn, Weak convergence of explicit extragradient algorithms for solving equilibrium problems, J. Inequal. Appl., 2019 (2019), 1-25, doi.org/10.1186/s13660-019-2233-1.   DOI