Browse > Article
http://dx.doi.org/10.4134/BKMS.b210607

APPROXIMATE PROJECTION ALGORITHMS FOR SOLVING EQUILIBRIUM AND MULTIVALUED VARIATIONAL INEQUALITY PROBLEMS IN HILBERT SPACE  

Khoa, Nguyen Minh (Electric Power University)
Thang, Tran Van (Electric Power University)
Publication Information
Bulletin of the Korean Mathematical Society / v.59, no.4, 2022 , pp. 1019-1044 More about this Journal
Abstract
In this paper, we propose new algorithms for solving equilibrium and multivalued variational inequality problems in a real Hilbert space. The first algorithm for equilibrium problems uses only one approximate projection at each iteration to generate an iteration sequence converging strongly to a solution of the problem underlining the bifunction is pseudomonotone. On the basis of the proposed algorithm for the equilibrium problems, we introduce a new algorithm for solving multivalued variational inequality problems. Some fundamental experiments are given to illustrate our algorithms as well as to compare them with other algorithms.
Keywords
Equilibrium problem; multivalued variational inequality problem; subgradient; approximate projection; pseudomonotone; Tseng's extragradient method;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 P. T. Vuong, J. J. Strodiot, and V. H. Nguyen, On extragradient-viscosity methods for solving equilibrium and fixed point problems in a Hilbert space, Optimization 64 (2015), no. 2, 429-451. https://doi.org/10.1080/02331934.2012.759327   DOI
2 G. M. Korpelevic, An extragradient method for finding saddle points and for other problems, Ekonomika i matematicheskie metody 12 (1976), no. 4, 747-756.
3 J. K. Kim, P. N. Anh, and H. G. Hyun, A proximal point-type algorithm for pseudomonotone equilibrium problems, Bull. Korean Math. Soc. 49 (2012), no. 4, 749-759. https://doi.org/10.4134/BKMS.2012.49.4.749   DOI
4 D. V. Hieu, Modified subgradient extragradient algorithm for pseudomonotone equilibrium problems, Bull. Korean Math. Soc. 55 (2018), no. 5, 1503-1521. https://doi.org/10.4134/BKMS.b170868   DOI
5 P. N. Anh, and T. Kuno, A cutting hyperplane method for generalized monotone nonlipschitzian multivalued variational inequalities, In: Modeling, Simulation and Optimization of Complex Processes. Eds: H.G. Bock et al., Springer-Verlag Berlin, Heidelberg, 2012.
6 B. V. Dinh and L. D. Muu, A projection algorithm for solving pseudomonotone equilibrium problems and its application to a class of bilevel equilibria, Optimization 64 (2015), no. 3, 559-575. https://doi.org/10.1080/02331934.2013.773329   DOI
7 M. Fukushima, A relaxed projection method for variational inequalities, Math. Program. 35 (1986), no. 1, 58-70. https://doi.org/10.1007/BF01589441   DOI
8 I. V. Konnov, A combined relaxation method for variational inequalities with nonlinear constraints, Math. Program. 80 (1998), no. 2, Ser. A, 239-252. https://doi.org/10.1007/BF01581728   DOI
9 H. Liu and J. Yang, Weak convergence of iterative methods for solving quasimonotone variational inequalities, Comput. Optim. Appl. 77 (2020), no. 2, 491-508. https://doi.org/10.1007/s10589-020-00217-8   DOI
10 D. P. Bertsekas and E. M. Gafni, Projection methods for variational inequalities with application to the traffic assignment problem, Mathematical Programming Study No. 17 (1982), 139-159. https://doi.org/10.1007/bfb0120965   DOI
11 L. D. Muu and W. Oettli, Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal. 18 (1992), no. 12, 1159-1166. https://doi.org/10.1016/0362-546X(92)90159-C   DOI
12 T. V. Thang, Inertial subgradient projection algorithms extended to equilibrium problems, Bull. Iranian Math. Soc. (2021), (Online first). https://link.springer.com/article/10.1007/s41980-021-00649-w
13 P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim. 38 (2000), no. 2, 431-446. https://doi.org/10.1137/S0363012998338806   DOI
14 Y. Censor, A. Gibali, and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl. 148 (2011), no. 2, 318-335. https://doi.org/10.1007/s10957-010-9757-3   DOI
15 T. V. Thang, and N. M. Khoa, Halpern subgradient method for pseudomonotone equilibrium problems in Hilbert spaces, Kyungpook Math. J. (2021), (Accepted).
16 P. N. Anh and J. K. Kim, Outer approximation algorithms for pseudomonotone equilibrium problems, Comput. Math. Appl. 61 (2011), no. 9, 2588-2595. https://doi.org/10.1016/j.camwa.2011.02.052   DOI
17 P. N. Anh, T. V. Thang, and H. T. C. Thach, Halpern projection methods for solving pseudomonotone multivalued variational inequalities in Hilbert spaces, Numer. Algorithms 87 (2021), no. 1, 335-363. https://doi.org/10.1007/s11075-020-00968-9   DOI
18 P. N. Anh, T. V. Thang, and H. T. C. Thach, A subgradient proximal method for solving a class of monotone multivalued variational inequality problems, Numer. Algorithms 89 (2022), no. 1, 409-430. https://doi.org/10.1007/s11075-021-01119-4   DOI
19 E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), no. 1-4, 123-145.
20 F. Facchinei and J.-S. Pang, Finite-dimensional variational inequalities and complementarity problems. Vol. I, Springer Series in Operations Research, Springer-Verlag, New York, 2003.
21 K. Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, 28, Cambridge University Press, Cambridge, 1990. https://doi.org/10.1017/CBO9780511526152   DOI
22 D. V. Hieu, Halpern subgradient extragradient method extended to equilibrium problems, Rev. R. Acad. Cienc. Exactas F'is. Nat. Ser. A Mat. RACSAM 111 (2017), no. 3, 823-840. https://doi.org/10.1007/s13398-016-0328-9   DOI
23 P.-E. Mainge, A hybrid extragradient-viscosity method for monotone operators and fixed point problems, SIAM J. Control Optim. 47 (2008), no. 3, 1499-1515. https://doi.org/10.1137/060675319   DOI
24 A. N. Iusem and W. Sosa, On the proximal point method for equilibrium problems in Hilbert spaces, Optimization 59 (2010), no. 8, 1259-1274. https://doi.org/10.1080/02331931003603133   DOI
25 Q. L. Dong, Y. J. Cho, L. L. Zhong, and T. M. Rassias, Inertial projection and contraction algorithms for variational inequalities, J. Global Optim. 70 (2018), no. 3, 687-704. https://doi.org/10.1007/s10898-017-0506-0   DOI
26 S. Laszlo, Multivalued variational inequalities and coincidence point results, J. Math. Anal. Appl. 404 (2013), no. 1, 105-114. https://doi.org/10.1016/j.jmaa.2013.03.007   DOI
27 G. Mastroeni, On auxiliary principle for equilibrium problems, in Equilibrium problems and variational models (Erice, 2000), 289-298, Nonconvex Optimization and Its Applications 68, Kluwer Acad. Publ., Norwell, MA, 2003. https://doi.org/10.1007/978-1-4613-0239-1_15   DOI
28 H. ur Rehman, P. Kumam, Y. J. Cho, Y. I. Suleiman, and W. Kumam, Modified Popov's explicit iterative algorithms for solving pseudomonotone equilibrium problems, Optim. Methods Softw. 36 (2021), no. 1, 82-113. https://doi.org/10.1080/10556788.2020.1734805   DOI
29 Y. Shehu, O. S. Iyiola, X. Li, and Q. Dong, Convergence analysis of projection method for variational inequalities, Comput. Appl. Math. 38 (2019), no. 4, Paper No. 161, 21 pp. https://doi.org/10.1007/s40314-019-0955-9   DOI
30 D. Q. Tran, M. L. Dung, and V. H. Nguyen, Extragradient algorithms extended to equilibrium problems, Optimization 57 (2008), no. 6, 749-776. https://doi.org/10.1080/02331930601122876   DOI