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WEAK AND STRONG CONVERGENCE OF SUBGRADIENT

EXTRAGRADIENT METHODS FOR PSEUDOMONOTONE

EQUILIBRIUM PROBLEMS

Dang Van Hieu

Abstract. In this paper, we introduce three subgradient extragradient
algorithms for solving pseudomonotone equilibrium problems. The paper
originates from the subgradient extragradient algorithm for variational
inequalities and the extragradient method for pseudomonotone equilib-
rium problems in which we have to solve two optimization programs onto
feasible set. The main idea of the proposed algorithms is that at every
iterative step, we have replaced the second optimization program by that
one on a specific half-space which can be performed more easily. The
weakly and strongly convergent theorems are established under widely
used assumptions for bifunctions.

1. Introduction

Let H be a real Hilbert space and C be a nonempty closed convex subset of
H . Let f : H × H → R be a bifunction with f(x, x) = 0 for all x ∈ C. The
equilibrium problem (EP) is stated as follows:

(1) Find x∗ ∈ C such that f(x∗, y) ≥ 0, ∀y ∈ C.

The solution set of EP (1) is denoted by EP (f). The EP includes, as special
cases, many mathematical models such as: variational inequality problems,
fixed point problems, optimization problems, Nash equilirium problems, com-
plementarity problems, etc., see [8, 21] and the references therein. In recent
years, many algorithms have been proposed for solving EPs [1, 2, 3, 4, 5, 6,
13, 16, 17, 18, 20, 25, 28]. In the case, the bifunction f is monotone, solution
approximations of EPs are based on a regularization equilibrium problem, i.e.,
at the step n, known xn, the next approximation xn+1 is the solution of the
following problem:

(2) Find x ∈ C such that: f(x, y) +
1

rn
〈y − x, x− xn〉 ≥ 0, ∀y ∈ C,
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where rn is a suitable parameter. Note that problem (2) is strongly monotone,
hence its solution exists and is unique. However, if the bifunction f is more
general monotone, for instance, pseudomonotone then problem (2) in general
is not strongly monotone. So, the unique solvability of problem (2) is not
guaranteed, even its solution set can be not convex. In this case, the authors
in [1, 25] replaced problem (2) by the following two strongly convex programs

yn = argmin
y∈C

{λf(xn, y) +
1

2
||xn − y||2},(3)

zn = argmin
y∈C

{λf(yn, y) +
1

2
||xn − y||2},(4)

where λ is a suitable parameter. If f(x, y) = 〈A(x), y − x〉, where A : H → H is
a nonlinear operator, then EP (1) becomes the following variational inequality
problem (VIP):

(5) Find x∗ ∈ C such that 〈A(x∗), y − x∗〉 ≥ 0, ∀y ∈ C.

The solution set of VIP (5) is denoted by V I(A,C). In this case, two strongly
convex programs (3)-(4) are reduced to the extragradient method (or double
projection method) which was first introduced by Korpelevich [19] in Euclidean
spaces for the saddle point problem and then it was extended to Hilbert spaces
by Nadezhkina and Takahashi [22, 23] for variational inequalities for Lipschitz
continuous and monotone operators as follows

yn = PC(xn − λA(xn)),(6)

zn = PC(xn − λA(yn)).(7)

If C has a simple structure as balls or half-spaces then problems (3)-(4) and
(6)-(7) can be easily solved. In general, if C is any closed convex set, we have
to solve two strongly convex optimization problems (or two projections) on C
per each iteration. This can be costly and affect the efficiency of used methods.
In 2011, the authors in [10, 11] proposed the subgradient extragradient method
for variational inequalities in which they replaced projection (7) on C by that
one on a specific half-space which can be computed explicitly.

In this paper, motivated and inspired by the results in [10, 11], we propose
three subgradient extragradient algorithms for solving EPs for pseudomonotone
bifunctions. In these algorithms, we replaced strongly convex optimization
program (4) on feasible set C by that one on a specific half-space whose the
bounding hyperplane supported on the feasible set C. It seems to be more
easily performed than on the feasible set.

The paper is organized as follows: In Section 2, we collect some definitions
and results for further use. Section 3 deals with the proposed algorithms and
analyzing the convergence of iteration sequences generated by the algorithms.
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2. Preliminaries

In this section, we recall some definitions and preliminary results. Let C
be a nonempty closed convex subset of a real Hilbert space H . A mapping
S : C → H is called Lipschitz continuous on C if there exists a positive constant
L such that ||S(x) − S(y)|| ≤ L||x − y|| for all x, y ∈ C. If L = 1, then S is
said to be nonexpansive on C. The fixed point set of S is denoted by F (S).
We begin with the following properties of a nonexpansive mapping.

Lemma 2.1 ([15]). Assume that S : C → C is a nonexpansive mapping. If S
has a fixed point, then

(i) F (S) is a closed convex subset of C.

(ii) I − S is demiclosed, i.e., whenever {xn} is a sequence in C weakly

converging to some point x ∈ C and the sequence {(I − S)xn} strongly

converges to some point y, it follows that (I − S)x = y.

For solving EP (1), we assume that the bifunction f satisfies the following
conditions:

(A1) f(x, x) = 0 for all x ∈ C and f is pseudomonotone, i.e., for all x, y ∈ C,

f(x, y) ≥ 0 ⇒ f(y, x) ≤ 0;

(A2) f is Lipschitz-type continuous, i.e., there exist two positive constants
c1, c2 such that

f(x, y) + f(y, z) ≥ f(x, z)− c1||x− y||2 − c2||y − z||2, ∀x, y, z ∈ H ;

(A3) f is jointly weakly upper semicontinuous on the product C ×C, in the
sense that if x, y ∈ C and {xn} , {yn} ⊂ H converge weakly to x and
y, respectively, then lim supn→∞

f(xn, yn) ≤ f(x, y);
(A4) f(x, ·) is convex and subdifferentiable on H for every fixed x ∈ H.

If A : H → H is a L-Lipschitz continuous mapping on H , then the bifunction
f(x, y) = 〈A(x), y − x〉 satisfies hypothesis (A2) with c1 = c2 = L/2. The class
of other bifunctions, which is generalized from the Cournot-Nash equilibrium
model [14, 25, 26] as

(8) f(x, y) = 〈F (x) +Qy + q, y − x〉 , x, y ∈ R
n,

where F : Rn → R, Q ∈ R
n×n is a symmetric positive semidefinite matrix and

q ∈ R
n also satisfies condition (A2) under some suitable assumptions imposed

on F [25]. It is easy to show that if f satisfies conditions (A1)-(A4), then the
solution set EP (f) is closed and convex, see for instance [25]. In this paper,
we assume that EP (f) is nonempty.

The metric projection PC : H → C is defined by

PCx = argmin {‖y − x‖ : y ∈ C} .
Since C is nonempty closed and convex, PCx exists and is unique. It is also
known that PC has the following characteristic properties.
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Lemma 2.2. Let PC : H → C be the metric projection from H onto C. Then

(i) PC is firmly nonexpansive, i.e.,

〈PCx− PCy, x− y〉 ≥ ‖PCx− PCy‖2 , ∀x, y ∈ H.

(ii) For all x ∈ C, y ∈ H,

(9) ‖x− PCy‖2 + ‖PCy − y‖2 ≤ ‖x− y‖2 .
(iii) z = PCx if and only if

(10) 〈x− z, z − y〉 ≥ 0, ∀y ∈ C.

Note that any closed convex subset C ofH can be represented as the sublevel
set of an appropriate convex function c : H → R, i.e., C = {v ∈ H : c(v) ≤ 0} .
The subdifferential of c at x is defined by

∂c(x) = {w ∈ H : c(y)− c(x) ≥ 〈w, y − x〉 , ∀y ∈ H} .
For each z ∈ H and w ∈ ∂c(z), we denote

T (z) = {v ∈ H : c(z) + 〈w, v − z〉 ≤ 0} .
If z /∈ intC, then T (z) is a half-space whose bounding hyperplane separates the
set C from the point z. Otherwise, T (z) is the entire space H . We recall that
the normal cone of C at x ∈ C is defined by

NC(x) = {w ∈ H : 〈w, y − x〉 ≤ 0, ∀y ∈ C} .

Lemma 2.3 ([12]). Let C be a nonempty closed convex subset of a real Hilbert

space H and g : C → R be a convex, lower semicontinuous and subdifferentiable

function on C. Then, x∗ is a solution to the convex optimization problem

min {g(x) : x ∈ C} if and only if 0 ∈ ∂g(x∗)+NC(x
∗), where ∂g(·) denotes the

subdifferential of g and NC(x
∗) is the normal cone of C at x∗.

Lemma 2.4 ([29]). Let H be a real Hilbert space and C be a nonempty closed

convex subset of H. Let {xn} ⊂ H be a Fejér-monotone sequence with respect

to C, i.e., for every u ∈ C,

||xn+1 − u|| ≤ ||xn − u||, ∀n ≥ 0.

Then the sequence {PC(xn)} converges strongly to some z ∈ C.

3. Main results

The following algorithm can be considered as an extension of the results in
[10, 11] to equilibrium problems.

Algorithm 3.1. (Subgradient Extragradient Method)
Initialization. Choose x0 ∈ H and the control parameter sequences {λk},
{γk} satisfying 0 < α ≤ λk ≤ β < min

(

1
2c1

, 1
2c2

)

and γk ∈ [ǫ, 1
2
] for some
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ǫ ∈ (0, 1
2
]. Set n := 0.

Step 1. Solve a strongly convex optimization program

yn = argmin
y∈C

{λnf(xn, y) +
1

2
||xn − y||2}.

If yn = xn, then stop.

Step 2. Solve a strongly convex optimization program

xn+1 = argmin
y∈Tn

{λnf(yn, y) +
1

2
||xn − y||2},

where Tn is the half-space whose bounding hyperplane supported on C at yn,
i.e., Tn = {v ∈ H : 〈(xn − λnwn)− yn, v − yn〉 ≤ 0} and wn ∈ ∂2f(xn, yn). Set
n := n+ 1 and go back Step 1.

Remark 3.2. Before analyzing the convergence, we give some advantages of
Algorithm 3.1 in comparing with the extragradient method [25].

(a) If f(x, y) = 〈A(x), y − x〉, where A : H → H is a nonlinear operator,
then the optimization problem in Step 2 of Algorithm 3.1 is reduced to

(11) xn+1 = PTn
(xn − λnA(yn)).

It is clear that projection (11) is performed on half-space Tn and it is explicit
while the second optimization problem in the extragradient method [25] is a
projection onto the feasible set C. Even in ℜm when C has a simple structure
as a polyhedral convex set C = 〈x ∈ ℜm : Ex ≤ e〉, where E ∈ ℜk×m and
e ∈ ℜk then the projection on C is often computed by cyclic (parallel or block)
iterative methods. This can be costly if the number of linear inequalities k is
large.

(b) We consider the bifunction f : C×C → ℜ which is generalized from the
Cournot-Nash model [14, 25] as

(12) f(x, y) = 〈Px+Qy + q, y − x〉 ,
where q ∈ ℜm and P, Q are two m × m matrices. Since Tn is a half-space,
the optimization problem in Step 2 of Algorithm 3.1 is always a convex qua-
dratic problem (only with one linear inequality constraint). This problem can
be solved very effectively by the available methods of convex quadratic pro-
gramming [9, Chapter 8] while both two solved optimization problems over C
in the extragradient method may be costly, specially when C has a complex
structure.

The following lemma gives us a stopping criterion of Algorithm 3.1.

Lemma 3.3. If yn = xn, then xn ∈ EP (f), i.e., xn is a solution of EP (1).

Proof. If yn = xn, then from the definition of yn we obtain

xn = argmin
y∈C

{λnf(xn, y) +
1

2
||xn − y||2}.
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By [20, Proposition 2.1], one has xn ∈ EP (f) . The proof of Lemma 3.3 is
complete. �

Lemma 3.4. Assume that x∗ ∈ EP (f). Let {yn} , {xn} be the sequences

determined as in Algorithm 3.1. Then, there holds the relation

||xn+1−x∗||2 ≤ ||xn−x∗||2−(1− 2λnc1) ||yn−xn||2−(1− 2λnc2) ||xn+1−yn||2.
Proof. Since xn+1 ∈ Tn, we have

〈(xn − λnwn)− yn, xn+1 − yn〉 ≤ 0.

Thus

(13) 〈xn − yn, xn+1 − yn〉 ≤ λn 〈wn, xn+1 − yn〉 .
From wn ∈ ∂2f(xn, yn) and the definition of subdifferential, we obtain

f(xn, y)− f(xn, yn) ≥ 〈wn, y − yn〉 , ∀y ∈ H.

The last inequality with y = xn+1 and (13) imply that

(14) λn {f(xn, xn+1)− f(xn, yn)} ≥ 〈xn − yn, xn+1 − yn〉 .
By Lemma 2.3 and

xn+1 = argmin
y∈Tn

{λnf(yn, y) +
1

2
||xn − y||2},

one has

0 ∈ ∂2

{

λnf(yn, y) +
1

2
||xn − y||2

}

(xn+1) +NTn
(xn+1).

Thus, there exist w ∈ ∂2f(yn, xn+1) and w̄ ∈ NTn
(xn+1) such that

(15) λnw + xn+1 − xn + w̄ = 0.

From the definition of the normal cone and w̄ ∈ NTn
(xn+1), we get

〈w̄, y − xn+1〉 ≤ 0

for all y ∈ Tn. This together with (15) implies that

λn 〈w, y − xn+1〉 ≥ 〈xn − xn+1, y − xn+1〉
for all y ∈ Tn. Since x∗ ∈ Tn,

(16) λn 〈w, x∗ − xn+1〉 ≥ 〈xn − xn+1, x
∗ − xn+1〉 .

By w ∈ ∂2f(yn, xn+1), we also obtain

f(yn, y)− f(yn, xn+1) ≥ 〈w, y − xn+1〉 , ∀y ∈ H.

This together with (16) implies that

(17) λn {f(yn, x∗)− f(yn, xn+1)} ≥ 〈xn − xn+1, x
∗ − xn+1〉 .

Note that x∗ ∈ EP (f), so f(x∗, yn) ≥ 0. The pseudomonotonicity of f implies
that f(yn, x

∗) ≤ 0. From (17), we get

(18) 〈xn − xn+1, xn+1 − x∗〉 ≥ λnf(yn, xn+1).
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The Lipschitz-type continuity of f leads to

(19) f(yn, xn+1) ≥ f(xn, xn+1)− f(xn, yn)− c1||xn − yn||2 − c2||xn+1 − yn||2.
Combining the relations (18) and (19), we obtain

〈xn − xn+1, xn+1 − x∗〉 ≥ λn {f(xn, xn+1)− f(xn, yn)}
− λn

{

c1||xn − yn||2 + c2||xn+1 − yn||2
}

.(20)

By (14), (20), we obtain

〈xn − xn+1, xn+1 − x∗〉 ≥ 〈xn − yn, xn+1 − yn〉
− λnc1||xn − yn||2 − λnc2||xn+1 − yn||2.(21)

We have the following facts

2 〈xn − xn+1, xn+1 − x∗〉 = ||xn − x∗||2 − ||xn+1 − xn||2 − ||xn+1 − x∗||2.
2 〈xn − yn, xn+1 − yn〉 = ||xn − yn||2 + ||xn+1 − yn||2 − ||xn − xn+1||2.

The last two relations and (21) lead to the desired conclusion of Lemma 3.4. �

Theorem 3.5. Let C be a nonempty closed convex subset of a real Hilbert

space H. Assume that the bifunction f satisfies all conditions (A1)-(A4). In

addition the solution set EP (f) is nonempty. Then, the sequences {xn} , {yn}
generated by Algorithm 3.1 converge weakly to some solution u∗ ∈ EP (f).
Moreover, u∗ = limn→∞

PEP (f)(xn).

Proof. From Lemma 3.3, we obtain

(1− 2λnc1) ||yn − xn||2 ≤ ||xn − x∗||2 − ||xn+1 − x∗||2.
Therefore

(22)

∞

∑

n=1

(1− 2λnc1) ||yn − xn||2 ≤ ||x0 − x∗||2.

From the hypothesis of λn, we get 0 < 1− 2βc1 ≤ 1− 2λnc1. Thus, from (22),
one has

∞

∑

n=1

||yn − xn||2 ≤ ||x0 − x∗||2
1− 2βc1

< ∞.

Hence,

(23) lim
n→∞

||yn − xn|| = 0.

By Lemma 3.3, the sequence {xn} is bounded. So, there exists a subsequence
of {xn}, denoted by {xm}, converging weakly to u∗, i.e., xm ⇀ u∗. From (23),
we also have ym ⇀ u∗. From the definition of ym and Lemma 2.3, we obtain

0 ∈ ∂2

{

λnf(xm, y) +
1

2
||xm − y||2

}

(ym) +NC(ym).

Therefore, there exist w ∈ ∂2f(xm, ym) and w̄ ∈ NC(ym) such that

(24) λnw + ym − xm + w̄ = 0.
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Since w̄ ∈ NC(ym), 〈w̄, y − ym〉 ≤ 0 for all y ∈ C. This together with (24)
implies that

(25) λn 〈w, y − ym〉 ≥ 〈xm − ym, y − ym〉
for all y ∈ C. Since w ∈ ∂2f(xn, ym),

(26) f(xm, y)− f(xm, ym) ≥ 〈w, y − ym〉 , ∀y ∈ C.

From (25) and (26), we get

(27) λn (f(xm, y)− f(xm, ym)) ≥ 〈xm − ym, y − ym〉 , ∀y ∈ C.

Letting m → ∞ in (27) and using the assumption of λn, (A1) and (A3), we can
conclude that f(u∗, y) ≥ 0 for all y ∈ C. Thus, u∗ ∈ EP (f). Next, we show
that the whole sequence {xn} converges weakly to u∗. Indeed, from Lemma
3.3, the sequence {||xn − x∗||} is decreasing for each x∗ ∈ EP (f). Therefore,
there exists the limit c(x∗) = limn→∞

||xn−x∗|| for each x∗ ∈ EP (f). Assume
that ū∗ is any weak cluster point of {xn} such that ū∗ 6= u∗ and xk ⇀ ū∗ where
{xk} is some subsequence of {xn}. From the Opial condition [24], we have

c(u∗) = lim
m→∞

||xm − u∗|| = lim
m→∞

inf ||xm − u∗||
< lim

m→∞

inf ||xm − ū∗|| = lim
m→∞

||xm − ū∗|| = c(ū∗)

= lim
k→∞

||xk − ū∗|| = lim
k→∞

inf ||xk − ū∗||

< lim
k→∞

inf ||xk − u∗|| = lim
k→∞

||xk − u∗|| = c(u∗).

This is a contradiction, and so u∗ = ū∗. Hence, xn ⇀ u∗ as n → ∞. Clearly,
yn ⇀ u∗ as n → ∞ because ||xn − yn|| → 0. Let un = PEP (f)xn, by Lemma
2.4, we obtain un → z ∈ EP (f). Moreover, from Lemma 2.2 and u∗ ∈ EP (f),
we also get

〈un − u∗, xn − un〉 ≥ 0.

Passing to the limit in the last inequality as n → ∞, one has 〈z − u∗, u∗ − z〉 ≥
0. Thus z = u∗. Theorem 3.5 is proved. �

In order to obtain the strong convergence of the iterative sequences. We
propose the following algorithm, so-called the hybrid subgradient extragradi-
ent method, which combines the subgradient extragradient method and the
cutting-hyperplane. It can be considered as an extension of the algorithm in
[11] to equilibrium problems.

Algorithm 3.6. (Hybrid Subgradient Extragradient Method)
Initialization. Choose x0 ∈ H and the control parameter sequences {λk},
{γk} satisfying 0 < α ≤ λk ≤ β < min

(

1
2c1

, 1
2c2

)

and γk ∈ [ǫ, 1
2
] for some

ǫ ∈ (0, 1
2
]. Set n := 0.

Step 1. Solve two strongly convex optimization programs

yn = argmin
y∈C

{λnf(xn, y) +
1

2
||xn − y||2},
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zn = argmin
y∈Tn

{λnf(yn, y) +
1

2
||xn − y||2},

where Tn is defined as in Algorithm 3.1.

Step 2. Compute xn+1 = PHn∩Wn
(x0), where

Hn = {z ∈ H : 〈xn − zn, z − xn − γn(zn − xn)〉 ≤ 0} .
Wn = {z ∈ H : 〈x0 − xn, xn − z〉 ≥ 0} .

Step 3. If xn+1 = xn, then stop. Otherwise, n := n+ 1 and go back Step 1.

According to Algorithm 3.6, the sets Hn,Wn are either half-spaces or H .
Therefore, the projection xn+1 = PHn∩Wn

(x0) can be found explicitly. We need
the following results for proving the convergence of the sequences generated by
Algorithm 3.6.

Lemma 3.7. Assume that x∗ ∈ EP (f). Let {xn} , {yn} , {zn} be the sequences

generated by Algorithm 3.6. Then,

(i) There holds the relation

||zn − x∗||2 ≤ ||xn − x∗||2 − (1− 2λnc1) ||yn − xn||2 − (1− 2λnc2) ||zn − yn||2.
(ii) EP (f) ⊂ Hn ∩Wn for all n ≥ 0.

Proof. The proof of claim (i) is same to that one of Lemma 3.3. Next, we
show conclusion (ii). From the definitions of Hn,Wn, we see that these sets
are closed and convex. Now, we show that EP (f) ⊂ Hn ∩ Wn for all n ≥ 0.
Putting

Cn =

{

z ∈ H :

〈

xn − zn, z − xn − 1

2
(zn − xn)

〉

≤ 0

}

.

Since γn ∈ [ǫ, 1
2
], Cn ⊂ Hn. From (i) and the hypothesis of λn, we obtain

||zn − x∗|| ≤ ||xn − x∗|| for all x∗ ∈ EP (f) . This implies that EP (f) ⊂ Cn.
Next, we show that EP (f) ⊂ Cn ∩Wn for all n ≥ 0 by the induction. Indeed,
we have EP (f) ⊂ C0 ∩W0. Assume that EP (f) ⊂ Cn ∩Wn for some n ≥ 0.
From the definition of Wn, we see that xn+1 = PHn∩Wn

(x0). By (10), we
obtain

〈x0 − xn+1, xn+1 − z〉 ≥ 0, ∀y ∈ Hn ∩Wn.

By EP (f) ⊂ Cn ∩Wn ⊂ Hn ∩Wn,

〈x0 − xn+1, xn+1 − z〉 ≥ 0, ∀y ∈ EP (f).

Thus EP (f) ⊂ Wn+1 because of the definition of Wn+1, and so EP (f) ⊂
Cn ∩Wn ⊂ Hn ∩Wn for all n ≥ 0. Since EP (f) is nonempty. Therefore, xn+1

is well-defined. Lemma 3.7 is proved. �

Lemma 3.8. If Algorithm 3.6 finishes at some iteration n < ∞, then xn ∈
EP (f).
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Proof. Assume that xn+1 = xn. Since xn+1 = PHn∩Wn
(x0), xn = xn+1 ∈ Hn.

This together with the definition of Hn implies that γn||xn − zn|| ≤ 0. Thus,
xn = zn. From Lemma 3.7, we obtain yn = xn. Thus

xn = argmin

{

λnf(xn, y) +
1

2
||xn − y||2 : y ∈ C

}

.

Thus, from [20, Proposition 2.1], one has xn ∈ EP (f). The proof of Lemma
3.8 is complete. �

Lemma 3.9. Let {xn} , {yn} , {zn} be the sequences generated by Algorithm

3.6. Then, there hold the relations

lim
n→∞

||xn+1 − xn|| = lim
n→∞

||yn − xn|| = lim
n→∞

||zn − xn|| = 0.

Proof. Note that xn = PWn
(x0). For each u ∈ EP (f) ∈ Wn, from (9), one has

(28) ||xn − x0|| ≤ ||u− x0||.
Thus, the sequence {||xn − x0||} is bounded, and so {xn} is also bounded. By
xn+1 = PHn∩Wn

(x0) ∈ Wn and relation (9), we get

||xn − x0|| ≤ ||xn+1 − x0||.
Thus, the sequence {||xn − x0||} is non-decreasing, and so there exists the limit
of the sequence {||xn − x0||}. By xn+1 ∈ Wn, xn = PWn

(x0) and relation (9),
we also have

||xn+1 − xn||2 ≤ ||xn+1 − x0||2 − ||xn − x0||2.
Letting n → ∞ in the last inequality, one gets

(29) lim
n→∞

||xn+1 − xn|| = 0.

Since xn+1 = PHn∩Wn
(x0) ∈ Hn,

γn||zn − xn||2 ≤ 〈xn − zn, xn − xn+1〉 ≤ ||xn − zn||||xn − xn+1||.
Thus, γn||zn − xn|| ≤ ||xn − xn+1||. From γn ≥ ǫ > 0 and (29), one has

(30) lim
n→∞

||zn − xn|| = 0.

Lemma 3.7 and the triangle inequality lead to

(1− 2λnc1) ||yn − xn||2 ≤ ||xn − x∗||2 − ||zn − x∗||2

≤ (||xn − x∗||+ ||zn − x∗||)(||xn − x∗|| − ||zn − x∗||)
≤ (||xn − x∗||+ ||zn − x∗||)||xn − zn||.

The last inequality together with (30), the hypothesis of λn and the bounded-
ness of {xn} , {zn} implies that

lim
n→∞

||yn − xn|| = 0.

Lemma 3.8 is proved. �
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Theorem 3.10. Let C be a nonempty closed convex subset of a real Hilbert

space H. Assume that the bifunction f satisfies all conditions (A1)-(A4). In

addition the solution set EP (f) is nonempty. Then, the sequences {xn}, {yn},
{zn} generated by Algorithm 3.6 converge strongly to PEP (f)(x0).

Proof. Lemmas 3.7 and 3.9 ensure that the sets Hn,Wn are closed and convex
for all n ≥ 0 and the sequence {xn} is bounded. Assume that p is any weak limit
point of the sequence {xn}. Then, there exists a subsequence of {xn} converging
weakly to p. For the sake of simplicity, we denote again this subsequence by
{xn} and xn ⇀ p as n → ∞. Next, we show that p ∈ EP (f). Indeed, from
the definition of yn and Lemma 2.3, one gets

0 ∈ ∂2

{

λnf(xn, y) +
1

2
||xn − y||2

}

(yn) +NC(yn).

Thus, there exist w̄ ∈ NC(yn) and w ∈ ∂2f(xn, yn) such that

(31) λnw + yn − xn + w̄ = 0.

From the definition of the normal cone NC(yn), we have 〈w̄, y − yn〉 ≤ 0 for all
y ∈ C. Taking into account (31), we obtain

(32) λn 〈w, y − yn〉 ≥ 〈xn − yn, y − yn〉
for all y ∈ C. Since w ∈ ∂2f(xn, yn),

(33) f(xn, y)− f(xn, yn) ≥ 〈w, y − yn〉 , ∀y ∈ C.

Combining (32) and (33), one has

(34) λn (f(xn, y)− f(xn, yn)) ≥ 〈xn − yn, y − yn〉 , ∀y ∈ C.

From Lemma 3.9 and xn ⇀ p, we also have yn ⇀ p. Passing to the limit in the
inequality (34) and employing the assumption of λn, (A1) and (A3), we can
conclude that f(p, y) ≥ 0 for all y ∈ C. Hence, p ∈ EP (f). Finally, we show
that xn → p. Let x† = PEP (f)(x0). Using inequality (28) with u = x†, we get

||xn − x0|| ≤ ||x† − x0||.
By the weakly lower semicontinuity of the norm || · || and xn ⇀ p, we have

||p− x0|| ≤ lim inf
n→∞

||xn − x0|| ≤ lim sup
n→∞

||xn − x0|| ≤ ||x† − x0||.

By the definition of x†, p = x† and limn→∞
||xn − x0|| = ||x† − x0||. Since

xn ⇀ x†, xn − x0 ⇀ x† − x0. By the Kadec-Klee property of H , we have
xn − x0 → x† − x0 as n → ∞. Thus xn → x† = PEP (f)x0. From Lemma 3.9,
we also see that {yn} , {zn} converge strongly to PEP (f)x0. Theorem 3.10 is
proved. �

Next, we propose an algorithm, so-called the modified hybrid subgradient
extragradient - Mann algorithm, which combines the subgradient extragadient
method and Mann’s iteration method for finding a common element of the
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solution set of an equilibrium problem for a bifunction f and the fixed point
set of a mapping S : H → H . The algorithm is designed as follows:

Algorithm 3.11. (Modified Hybrid Subgradient Extragradient Method)
Initialization Choose x0 ∈ H and set n := 0. The control parameter sequences

{λk}, {γk}, {αk} satisfy the following conditions:

(a) 0 < α ≤ λk ≤ β < min
(

1
2c1

, 1
2c2

)

, γk ∈ [ǫ, 1
2
] for some ǫ ∈ (0, 1

2
].

(b) {αk} ⊂ (0, 1) such that limk→∞
supαk < 1.

Step 1. Solve two strongly convex optimization programs

yn = argmin
y∈C

{λnf(xn, y) +
1

2
||xn − y||2},

zn = argmin
y∈Tn

{λnf(yn, y) +
1

2
||xn − y||2},

where Tn is defined as in Algorithm 3.6.

Step 2. Calculate un = αnxn + (1− αn)Szn.
Step 3. Compute xn+1 = PHn∩Wn

(x0), where

Hn = {z ∈ H : 〈xn − un, z − xn − γn(un − xn)〉 ≤ 0} ;
Wn = {z ∈ H : 〈x0 − xn, xn − z〉 ≥ 0} .

Step 4. If xn+1 = xn = zn, then stop. Otherwise, n := n + 1 and go back

Step 1.

Remark 3.12. If Algorithm 3.11 finishes at the iteration step n < ∞, then
xn ∈ EP (f) ∩ F (S).

Theorem 3.13. Let C be a nonempty closed convex subset of a real Hilbert

space H. Assume that the bifunction f satisfies all conditions (A1)-(A4) and S :
H → H is a nonexpansive mapping. In addition the solution set F := EP (f)∩
F (S) is nonempty. Then, the sequences {xn} , {yn} , {zn} , {un} generated by

Algorithm 3.11 converge strongly to PF (x0).

Proof. From Lemma 2.1, the set F is closed and convex. By arguing similarly
to the proof of Lemma 3.7, we also obtain F ⊂ Hn ∩Wn. Next, we show that

lim
n→∞

||xn+1 − xn|| = lim
n→∞

||yn − xn|| = lim
n→∞

||zn − xn|| = 0.

lim
n→∞

||un − xn|| = lim
n→∞

||S(xn)− xn|| = 0.

Indeed, repeating the proofs of (29), (30) we obtain

(35) lim
n→∞

||xn+1 − xn|| = lim
n→∞

||un − xn|| = 0.

By the triangle inequality, we have
∣

∣||xn − x∗||2 − ||un − x∗||2
∣

∣ ≤ ||xn − un||(||xn − x∗||+ ||un − x∗||)



SUBGRADIENT EXTRAGRADIENT METHODS FOR EPS 891

for each x∗ ∈ F . The last inequality together with (35) and the boundedness
of {xn} , {un} one has

(36) lim
n→∞

(

||xn − x∗||2 − ||un − x∗||2
)

= 0.

For each x∗ ∈ F , from the convexity of || · ||2 and Lemma 3.7 we get

||un − x∗||2

= ||αn(xn − x∗) + (1− αn)(Szn − x∗)||2

≤ αn||xn − x∗||2 + (1− αn)||Szn − x∗||2

≤ αn||xn − x∗||2 + (1− αn)||zn − x∗||2

= ||xn − x∗||2 + (1 − αn)
{

zn − x∗||2 − ||xn − x∗||2
}

≤ ||xn − x∗||2 − (1 − αn)
{

(1 − 2λi
nc1)||xn − yn||2 + (1 − 2λnc2)||zn − yn||2

}

.

Therefore

(1− 2λnc1)||xn − yn||2 + (1− 2λnc2)||zn − yn||2 ≤ ||xn − x∗||2 − ||un − x∗||2
1− αn

.

Combining this inequality with relation (36) and hypothesises (a), (b), we
obtain

(37) lim
n→∞

||xn − yn|| = lim
n→∞

||zn − yn|| = 0.

Thus, from ||xn − zn|| ≤ ||xn − yn||+ ||yn − zn|| and (37), we obtain

lim
n→∞

||xn − zn|| = 0.

Moreover, from un = αnxn + (1− αn)Szn, we obtain

(38) ||un − xn|| = (1− αn)||xn − Szn||.
From (35), (38) and hypothesis (b), we can conclude that

lim
n→∞

||xn − Szn|| = 0.

This together with the inequality ||xn −Sxn|| ≤ ||xn −Szn||+ ||Szn −Sxn|| ≤
||xn − Szn||+ ||zn − xn|| implies that

(39) lim
n→∞

||xn − Sxn|| = 0.

Next, since {xn} is bounded, there exists a subsequence of {xn} converging
weakly to p. For the sake of simplicity, we denote again this subsequence by
{xn}, and so, xn ⇀ p as n → ∞. Lemma 2.1 and relation (39) ensure that
p ∈ F (S). Repeating the proof of Theorem 3.10, we can conclude that p ∈ F
and xn → p as n → ∞. The proof of Theorem 3.13 is complete. �
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