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TWO STEP ALGORITHM FOR SOLVING REGULARIZED
GENERALIZED MIXED VARIATIONAL

INEQUALITY PROBLEM

Kaleem Raza Kazmi, Faizan Ahmad Khan, and Mohammad Shahza

Abstract. In this paper, we consider a new class of regularized (non-
convex) generalized mixed variational inequality problems in real Hilbert
space. We give the concepts of partially relaxed strongly mixed mono-
tone and partially relaxed strongly θ-pseudomonotone mappings, which
are extension of the concepts given by Xia and Ding [19], Noor [13] and
Kazmi et al. [9]. Further we use the auxiliary principle technique to
suggest a two-step iterative algorithm for solving regularized (noncon-
vex) generalized mixed variational inequality problem. We prove that the
convergence of the iterative algorithm requires only the continuity, par-
tially relaxed strongly mixed monotonicity and partially relaxed strongly
θ-pseudomonotonicity. The theorems presented in this paper represent
improvement and generalization of the previously known results for solv-
ing equilibrium problems and variational inequality problems involving
the nonconvex (convex) sets, see for example Noor [13], Pang et al . [14],
and Xia and Ding [19].

1. Introduction

Variational inequality theory, introduced by Stampacchia [18], has become
a rich source of inspiration and motivation for the study of a large number of
problems arising in economics, finance, transportation, network and structural
analysis, elasticity and optimization. The ideas and techniques of this theory
are being used in a variety of diverse areas and proved to be productive and
innovative, see [2, 6-8, 12, 15]. It is worth mentioning that most of the results
regarding the existence and iterative approximation of solutions to variational
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inequality problems have been investigated and considered so far refer to the
case where the underlying set is a convex set.

In recent years, the concept of convex set has been generalized in many
directions, which has potential and important applications in various fields. A
significant generalization of convex set is the introduction of uniformly prox-
regular (smooth) set, see [5, 16, 17]. It is known that uniformly prox-regular
sets are nonconvex sets and include convex sets as special case.

Very recently, Bounkhel et al. [4], Noor [13], Moudafi [10], and Pang et al. [14]
have considered the variational inequality problems and equilibrium problems
over these nonconvex sets. They suggested and analyzed some projection type
iterative algorithms by using the prox-regular technique and auxiliary principle
technique.

Motivated by the recent research going on in this area, we introduce a varia-
tional inequality problem, which shall be called regularized (nonconvex) gener-
alized mixed variational inequality problem (in short, RGMVIP) in real Hilbert
space. We give the concepts of partially relaxed strongly mixed monotone and
regularized partially relaxed strongly θ-pseudomonotone mappings, which are
extension of the concepts given by Xia and Ding [19], Noor [13] and Kazmi
et al. [9]. Further, we use the auxiliary principle technique to suggest a two-
step iterative algorithm for approximating the solution of RGMVIP. We prove
that the convergence of the iterative algorithm requires only the continuity,
partially relaxed strongly mixed monotonicity and partially relaxed strongly θ-
pseudomonotonicity. The theorems presented in this paper represent improve-
ment and generalization of the previously known results for solving equilibrium
problems and variational inequality problems involving the nonconvex (convex)
sets, see for example Noor [13], Pang et al. [14], and Xia and Ding [19].

2. Preliminaries

Let H be a real Hilbert space whose norm and inner product are denoted by
‖·‖ and 〈·, ·〉, respectively. Let K be a nonempty closed set in H, not necessarily
convex. Let CB(H) be a family of all nonempty, closed and bounded subsets
of H, and let M(·, ·) be the Hausdorff metric on CB(H) defined by

M(C, D) = max
{

sup
x∈C

inf
y∈D

d(x, y), sup
y∈D

inf
x∈C

d(x, y)
}

, C,D ∈ CB(H).

First, we recall the following well-known concepts from nonlinear convex
analysis, see [5, 16, 17].

Definition 2.1. The proximal normal cone of K at u ∈ H is given by

NP (K; u) := {ξ ∈ H : u ∈ PK [u + αξ]},
where α > 0 is a constant and

PK [u] = {u∗ ∈ K : dK(u) = ‖u− u∗‖},
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where dK(u) is the usual distance function to the subset K, that is,

dK(u) = inf
v∈K

‖v − u‖.

The proximal normal cone NP (K; u) has the following characterization.

Lemma 2.1. Let K be a nonempty closed subset of H. Then ξ ∈ NP (K; u) if
and only if there exists a constant α > 0 such that

〈ζ, v − u〉 ≤ α‖v − u‖2, ∀v ∈ K.

Definition 2.2. The Clarke normal cone, denoted by NC(K; u), is defined as

NC(K; u) = c̄o[NP (K; u)],

where c̄oA means the closure of the convex hull of A.

Poliquin et al. [16] and Clarke et al. [5] have introduced and studied a new
class of nonconvex sets, which are called uniformly prox-regular sets. This class
of uniformly prox-regular sets has played an important role in many nonconvex
applications such as optimization, dynamic systems and differential inclusions.
In particular, we have:

Definition 2.3. For a given r ∈ (0,∞], a subset K is said to be normalized
uniformly r-prox-regular if and only if every nonzero proximal normal to K can
be realized by any r-ball, that is, ∀u ∈ K and 0 6= ξ ∈ NP (K; u) with ‖ξ‖ = 1,
one has

〈ξ, v − u〉 ≤ 1
2r

‖v − u‖2, ∀v ∈ K.

It is clear that the class of normalized uniformly prox-regular sets is suffi-
ciently large to include the class of convex sets, p-convex sets, C1,1 submani-
folds (possibly with boundary) of H, the images under a C1,1 diffeomorphism
of convex sets and many other nonconvex sets, see [5, 16, 17]. It is clear that
if r = ∞, then uniformly r-prox-regularity of K is equivalent to the convexity
of K.

It is known that if K is a uniformly prox-regular set, the proximal normal
cone NP (K;u) is closed as a set-valued mapping. Thus, we have NC(K; u) =
NP (K;u).

From now onward, the set K is uniformly r-prox-regular set, unless otherwise
specified. For given a nonlinear differentiable bifunction b : H×H → R∪{+∞},
a nonlinear bifunction F : H × H × H → R; a nonlinear mapping N : H ×
H → H and three set-valued mappings T, A, B : H → CB(H), we consider
the following regularized generalized mixed variational inequality problem (in
short, RGMVIP):

Find u ∈ K, x ∈ T (u), y ∈ A(u), z ∈ B(u) such that

(2.1) F (x, v, u)+〈 N(y, z), v−u〉+b(v, u)−b(u, u)+
1
2r
‖v−u‖2 ≥ 0, ∀v ∈ K.

Some special cases of RGMVIP (2.1):
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I. If γ = 1
2r = 0, then uniformly prox-regular set K becomes the con-

vex set K and consequently RGMVIP (2.1) reduces to the problem of
finding u ∈ K, x ∈ T (u), y ∈ A(u), z ∈ B(u) such that

(2.2) F (x, v, u) + 〈N(y, z), v − u〉+ b(v, u)− b(u, u) ≥ 0, ∀v ∈ K,

which appears to be new one.
II. In (I), if N(y, z) ≡ 0 ∀y, z ∈ H, RGMVIP (2.1) reduces to the problem

of finding u ∈ K, x ∈ T (u) such that

(2.3) F (x, v, u) + b(v, u)− b(u, u) ≥ 0, ∀v ∈ K,

which is known as mixed quasi-equilibrium problem and has been stud-
ied by Noor [12] and Xia and Ding [19].

III. If F (x, v, u) ≡ 0 ∀u, v, x ∈ H, RGMVIP (2.1) reduces to the problem
of finding u ∈ K, y ∈ A(u), z ∈ B(u) such that

(2.4) 〈N(y, z), v − u〉+ b(v, u)− b(u, u) +
1
2r
‖v − u‖2 ≥ 0, ∀v ∈ K,

which appears to be new one.
IV. If N(y, z) ≡ 0 ∀y, z ∈ H; T : H → H is a single valued mapping and

1
2r = 0, RGMVIP (2.1) reduces to the problem of finding u ∈ K such
that

(2.5) F (Tu, v, u) + b(v, u)− b(u, u) +
1
2r
‖v − u‖2 ≥ 0, ∀v ∈ K,

which is known as regularized mixed quasi-equilibrium problem and
has been studied by Noor [13].

Now, we give the following concepts and known results which are used in
the sequel.

Definition 2.4. Let T, A, B : H → CB(H); F : H × H × H → R and let
b : H ×H → R∪{+∞}. Then, for all u, v, w ∈ K, x1 ∈ T (u), x2 ∈ T (v), y1 ∈
A(u), y2 ∈ A(u), z1 ∈ B(u), z2 ∈ B(v),

(i)[9] N is said to be mixed monotone with respect to A and B if

〈N(y1, z1)−N(y2, z2), u− v〉 ≥ 0;

(ii)[9] N is said to be µ-partially relaxed strongly mixed monotone with respect
to A and B if there exists a constant η > 0 such that

〈N(y1, z1)−N(y2, z2), w − v〉 ≥ −µ‖w − u‖2;
(iii)[19] T is said to be M -continuous if {un} ⊂ H and un → u, then T (un) →

T (u) under the Hausdorff metric M on CB(H);
(iv)[19] F is said to be monotone with respect to T if

F (x1, v, u) + F (x2, u, v) ≤ 0;

(v)[19] F is said to be pseudomonotone with respect to T if

F (x2, v, u) ≥ 0 implies F (x1, u, v) ≤ 0;
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(vi)[19] F is said to be δ-partially relaxed strongly monotone with respect to T
if there exists a constant δ > 0 such that

F (x1, v, u) + F (x2, w, v) ≤ δ‖w − u‖2;
(vii)[19] F is said to be σ-partially relaxed strongly pseudomonotone with respect

to T if there exists a constant σ > 0 such that

F (x2, w, v) ≥ 0 implies F (x1, v, u) ≤ σ‖w − u‖2;
(viii) F is said to be regularized γ-partially relaxed strongly θ-pseudomonotone

with respect to T , where θ is a real-valued multivariable function, if
there exists a constant γ > 0 such that

F (x2, w, v) + θ +
1
2r
‖v − u‖2 ≥ 0

implies

F (x1, v, u)− θ +
1
2r
‖v − u‖2 ≤ γ‖w − u‖2;

(ix)[19] b is said to be skew-symmetric if

b(u, u)− b(u, v)− b(v, u) + b(v, v) ≥ 0, ∀u, v ∈ H.

Remark 2.1. (1) If w = u, then partially relaxed strongly mixed mono-
tonicity of N reduces to the mixed monotonicity of N .

(2) Regularized γ-partially relaxed strongly θ-psedomonotonicity of F gen-
eralize the concepts of partially relaxed strongly jointly pseudomono-
tonicity of F given by Xia and Ding [19] and θ-pseudomonotonicity of
F given by Kazmi et al. [9].

(3) We note that if skew-symmetric bifunction b is bilinear, then b(u, u) ≥
0, ∀u ∈ H.

Lemma 2.2. For all u, v ∈ H, we have

2〈u, v〉 = ‖u + v‖2 − ‖u‖2 − ‖v‖2.

3. Main results

In this section, we suggest and analyze a new iterative method for solving
RGMVIP (2.1) by using the auxiliary principle technique.

For a given u ∈ K, x ∈ T (u), y ∈ A(u), z ∈ B(u), consider the following
auxiliary inequality problem (AVIP): Find w ∈ K such that

(3.1)
ρF (x, v, w) + 〈ρN(y, z) + w − u, v − w〉

+ ρb(v, w)− ρb(w, w) +
ρ

2r
‖v − w‖2 ≥ 0, ∀v ∈ K,

where r ∈ (0,∞] and ρ > 0 is a constant.
We note that if w = u, then clearly w is a solution of RGMVIP (2.1). This

observation and Nadler’s technique [11] enable us to suggest and analyze the
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following two-step iterative algorithm for finding the approximate solution of
RGMVIP (2.1).

Iterative Algorithm 3.1. For given u0 ∈ K, x0 ∈ T (u0), y0 ∈ A(u0), z0 ∈
B(u0), compute the approximate solution (un, wn, xn, yn, zn) by the iterative
schemes:

(3.2)
ρF (ξn, v, wn) + 〈ρN(ηn, γn) + un+1 − wn, v − un+1〉+ ρb(v, un+1)

− ρb(un+1, un+1) +
ρ

2r
‖v − wn‖2 ≥ 0, ∀v ∈ K;

(3.3)

ξn ∈ T (wn) : ‖ξn+1 − ξn‖ ≤ (1 + (1 + n)−1) M
(
T (wn+1), T (wn)

)
;

ηn ∈ A(wn) : ‖ηn+1 − ηn‖ ≤ (1 + (1 + n)−1) M
(
A(wn+1), A(wn)

)
;

γn ∈ B(wn) : ‖γn+1 − γn‖ ≤ (1 + (1 + n)−1) M
(
B(wn+1), B(wn)

)
;

(3.4)
βF (xn, v, un) + 〈βN(yn, zn) + wn − un, v − wn〉

+ βb(v, wn)− βb(wn, wn) +
β

2r
‖v − un‖2 ≥ 0, ∀v ∈ K;

(3.5)

xn ∈ T (un) : ‖xn+1 − xn‖ ≤ (1 + (1 + n)−1) M
(
T (un+1), T (un)

)
;

yn ∈ A(un) : ‖yn+1 − yn‖ ≤ (1 + (1 + n)−1) M
(
A(un+1), A(un)

)
;

zn ∈ B(un) : ‖zn+1 − zn‖ ≤ (1 + (1 + n)−1) M
(
B(un+1), B(un)

)
,

where n = 1, 2, . . . and ρ, β > 0 are constants.
For convergence analysis of Iterative Algorithm 3.1, we have the following

theorem.

Theorem 3.1. Let (u, w, x, y, z), where u,w ∈ K, x ∈ T (u), y ∈ A(u), z ∈
B(u) be a solution of RGMVIP (2.1) and let (un, wn, xn, yn, zn) be an ap-
proximate solution obtained by Iterative Algorithm 3.1. Let F be regularized
α-partially relaxed strongly θ-pseudomonotone with respect to T , where θ is a
real-valued multivariable function defined as

θ(y, z, u, v) = 〈N(y, z), v − u)〉+ b(v, u) + b(u, u), ∀ y, z, u, v ∈ H;

let N be µ-partially relaxed strongly mixed monotone with respect to A and B,
and let b be skew symmetric. Then

(3.6) ‖un+1−u‖2 ≤ ‖un−u‖2−
(
1− 2ρ(α +µ)

) (
1+

ρ

r

)−1

‖un+1−wn‖2,

(3.7) ‖wn − u‖2 ≤ ‖wn−1 − u‖2 −
(
1− 2β(α + µ)

) (
1 +

β

r

)−1

‖wn − un‖2,

where 0 < ρ, β < 1
2(α+µ) and r ∈ (0,∞].
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Proof. By hypothesis, (u, v, x, y, z) satisfies
(3.8)
ρF (x, v, u) + 〈ρN(y, z), v− u〉+ ρb(v, u)− ρb(u, u) +

ρ

2r
‖v− u‖2 ≥ 0, ∀v ∈ K,

(3.9)

βF (x, v, u)+ 〈βN(y, z), v−u〉+βb(v, u)−βb(u, u)+
β

2r
‖v−u‖2 ≥ 0, ∀v ∈ K,

where r ∈ (0,∞] and ρ, β > 0 are constants.
Now, taking v = un+1 in (3.8), we have

(3.10)
ρF (x, un+1, u) + 〈ρN(y, z), un+1 − u〉

+ ρb(un+1, u)− ρb(u, u) +
ρ

2r
‖un+1 − u‖2 ≥ 0.

Since F is regularized α-partially relaxed strongly θ-pseudomonotone with re-
spect to T , then (3.10) implies that

(3.11)
ρF (ξn, u, wn) + 〈ρN(y, z), u− un+1〉+ ρb(u, u)

− ρb(un+1, u) +
ρ

2r
‖un+1 − u‖2 ≤ ρα‖un+1 − wn‖2.

Taking v = u in (3.2), we obtain

(3.12)
ρF (ξn, u, wn) + 〈ρN(ηn, γn) + un+1 − wn, u− un+1〉+ ρb(u, un+1)

− ρb(un+1, un+1) +
ρ

2r
‖u− wn‖2 ≥ 0.

From (3.11) and (3.12), we have

(3.13)

〈un+1 − wn, u− un+1〉
≥ ρ〈N(ηn, γn)−N(y, z), un+1 − u〉

+
ρ

2r
‖un+1 − u‖2 − ρ

2r
‖u− wn‖2

+ ρ
[
b(u, u)− b(un+1, u)− b(u, un+1) + b(un+1, un+1)

]

− ρα‖un+1 − wn‖2.
Since N is µ-partially relaxed strongly mixed monotone with respect to A and
B and b is skew symmetric, then (3.13) reduces to
(3.14)

〈un+1 − wn, u− un+1〉
≥ − ρµ‖un+1 − wn‖2 +

ρ

2r
‖un+1 − u‖2 − ρ

2r
‖u− wn‖2 − ρα‖un+1 − wn‖2

≥ − ρ(α + µ)‖un+1 − wn‖2 +
ρ

2r
‖un+1 − u‖2 − ρ

2r
‖u− wn‖2.

By Lemma 2.2, we have

(3.15) 〈un+1−wn, u−un+1〉 =
1
2

[
‖u−wn‖2−‖un+1−wn‖2−‖u−un+1‖2

]
.
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Combining (3.14) and (3.15), we have
(
1 +

ρ

r

)
‖un+1 − u‖2 ≤

(
1 +

ρ

r

)
‖u−wn‖2 − (1− 2ρ(α + µ)) ‖un+1 −wn‖2,

which implies that

(3.16) ‖un+1−u‖2 ≤ ‖u−wn‖2−
(
1−2ρ(α+µ)

) (
1+

ρ

r

)−1

‖un+1−wn‖2.
Now, taking v = wn in (3.9), we have
(3.17)

βF (x,wn, u) + 〈βN(y, z), wn − u〉+ βb(wn, u)− βb(u, u) +
β

2r
‖wn − u‖2 ≥ 0.

Since F is regularized α-partially relaxed strongly θ-pseudomonotone with re-
spect to T , then (3.17) implies that

(3.18)
βF (xn, u, un) + 〈βN(y, z), u− wn〉+ βb(u, u)

− βb(wn, u) +
β

2r
‖wn − u‖2 ≤ βα‖wn − un‖2.

Taking v = u in (3.4), we obtain

(3.19)
βF (xn, u, un) + 〈βN(yn, zn) + wn − un, u− wn〉

+ βb(u,wn)− βb(wn, wn) +
β

2r
‖u− un‖2 ≥ 0.

Since N is µ-partially relaxed strongly mixed monotone with respect to A and
B and b is skew symmetric, then it follows from (3.18) and (3.19) that

(3.20) 〈wn−un, u−wn〉 ≥ −β(α+µ)‖wn−un‖2+ β

2r
‖u−wn‖2− β

2r
‖u−un‖2.

Again, by Lemma 2.2, we have

(3.21) 〈wn − un, u− wn〉 =
1
2

[
‖un − u‖2 − ‖wn − un‖2 − ‖u− wn‖2

]
.

Combining (3.20) and (3.21), we have
(
1 +

β

r

)
‖wn − u‖2 ≤

(
1 +

β

r

)
‖u− un‖2 − (1− 2β(α + µ)) ‖wn − un‖2,

which implies that

(3.22) ‖wn − u‖2 ≤ ‖u− un‖2 −
(
1− 2β(α + µ)

) (
1 +

β

r

)−1

‖wn − un‖2.

Since 0 < ρ, β < 1
2(α+µ) , inequalities (3.16) and (3.22) imply that

‖un+1 − u‖2 ≤ ‖u− wn‖2

and
‖wn − u‖2 ≤ ‖u− un‖2,

and hence conclusion (3.6) and (3.7) hold. This completes the proof. ¤
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Theorem 3.2. Let H be a finite dimensional space. Let the mappings b, F ,
N , T , A, B be the same as in Theorem 3.1 and let F,N be continuous and
T,A, B be M -continuous mappings. If 0 < ρ, β < 1

2(α+µ) , then the sequences
{un}, {wn}, {xn}, {yn}, {zn} generated by Iterative Algorithm 3.1 converge
strongly to a solution of RGMVIP (2.1).

Proof. Let u ∈ K, x ∈ T (u), y ∈ A(u), z ∈ B(u) be a solution of RGMVIP
(2.1), inequalities (3.6) and (3.7) hold. From (3.6) and (3.7), it follows that
the sequences {‖un−u‖} and {‖wn−u‖} are non-increasing, and consequently
{un} and {wn} are bounded. Furthermore, we have

∞∑
n=0

(
1− 2ρ(α + µ)

) (
1 +

ρ

r

)−1

‖un+1 − wn‖2 ≤ ‖u− u0‖2,

∞∑
n=0

(
1− 2β(α + µ)

) (
1 +

β

r

)−1

‖wn − un‖2 ≤ ‖u− w0‖2,

which imply that limn→∞ ‖un+1 − wn‖2 = 0 and limn→∞ ‖wn − un‖2 = 0.
Since

‖un+1 − un‖ ≤ ‖un+1 − wn‖+ ‖wn − un‖, ∀n ≥ 0,

we have
lim

n→∞
‖un+1 − un‖ = 0.

Since {un} is bounded in K, {un} has a subsequence {uni} converging to
a point u∗ ∈ K. Since T , A, B are M -continuous on H, it follows from
Proposition 1.5.2 [1] that T , A, B are upper semi-continuous on H. Since xn ∈
T (un), yn ∈ A(un), zn ∈ B(un) for all n ≥ 0, it follows from Proposition 11.11
[2] that there are subsequences {xnij

} ⊂ {xni}, {ynij
} ⊂ {yni}, {znij

} ⊂ {zni}
such that xnij

→ x∗ ∈ T (u∗), ynij
→ y∗ ∈ A(u∗), znij

→ z∗ ∈ B(u∗). By
(3.4), we have
(3.23)

βF (xnij
, v, unij

) + 〈βN(ynij
, znij

) + wnij
− unij

, v − wnij
〉+ βb(v, wnij

)

− βb(wnij
, wnij

) +
β

2r
‖v − unij

‖2 ≥ 0, ∀v ∈ K.

Continuity of F , N , b, and (3.23) implies that

F (x∗, v, u∗) + 〈N(y∗, z∗), v − u∗〉+ b(v, u∗)− b(u∗, u∗) ≥ 0, ∀v ∈ K.

Thus u∗ ∈ K, x∗ ∈ T (u∗), y∗ ∈ A(u∗), z∗ ∈ B(u∗) is a solution of RGMVIP
(2.1).

Now, we claim that the sequences {un}, {xn}, {yn}, {zn} converges to u∗, x∗,
y∗, z∗, respectively. In fact, since limn→∞ ‖un+1 − un‖ = 0, limi→∞ uni = u∗

and

‖un − u∗‖ ≤ ‖un − un+1‖+ ‖un+1 − un+2‖+ · · ·+ ‖uni−1 − uni‖+ ‖uni − u∗‖,
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we have limn→∞ un = u∗. Since T is M -continuous, by (3.5) we have
limn→∞ ‖xn+1 − xn‖ = 0.

It follows from the inequality

‖xn − x∗‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − xn+2‖+ · · ·+ ‖xnij
− x∗‖,

that is, xn → x∗. Similarly, we have yn → y∗ and zn → z∗. This completes the
proof. ¤
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