DOI QR코드

DOI QR Code

Weak and Strong Convergence of Hybrid Subgradient Method for Pseudomonotone Equilibrium Problems and Nonspreading-Type Mappings in Hilbert Spaces

  • Sriprad, Wanna (Department of Mathematics and Computer Scicence, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi) ;
  • Srisawat, Somnuk (Department of Mathematics and Computer Scicence, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi)
  • Received : 2016.10.16
  • Accepted : 2019.01.28
  • Published : 2019.03.23

Abstract

In this paper, we introduce a hybrid subgradient method for finding an element common to both the solution set of a class of pseudomonotone equilibrium problems, and the set of fixed points of a finite family of ${\kappa}$-strictly presudononspreading mappings in a real Hilbert space. We establish some weak and strong convergence theorems of the sequences generated by our iterative method under some suitable conditions. These convergence theorems are investigated without the Lipschitz condition for bifunctions. Our results complement many known recent results in the literature.

Keywords

References

  1. P. N. Anh, Strong convergence theorems for nonexpansive mappings and Ky Fan inequalities, J. Optim. Theory Appl., 154(2012), 303-320. https://doi.org/10.1007/s10957-012-0005-x
  2. P. N. Anh, A hybrid extragradient method extended to fixed point problems and equilibrium problems, Optimization, 62(2)(2013), 271-283. https://doi.org/10.1080/02331934.2011.607497
  3. P. N. Anh and L. D. Muu, A hybrid subgradient algorithm for nonexpansive mappings and equilibrium problems, Optim. Lett., 8(2014), 727-738. https://doi.org/10.1007/s11590-013-0612-y
  4. P. N. Anh and D. X. Son, A new method for a finite family of pseudocontractions and equilibrium problems, J. Appl. Math. Inform., 29(2011), 1179-1191. https://doi.org/10.14317/JAMI.2011.29.5_6.1179
  5. K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal., 67(2007), 2350-2360. https://doi.org/10.1016/j.na.2006.08.032
  6. A. Auslender, M. Teboulle and S. Ben-Tiba, A logarithmic quadratic proximal method for variational inequalities,Comput. Optim. Appl., 12(1999), 31-40. https://doi.org/10.1023/A:1008607511915
  7. J. Baillon, Un theoreme de type ergodique pour les contractions nonlineaires dans un espace de Hilbert, C. R. Acad. Sci. Paris Ser. A-B, 280(1975), A1511-A1514.
  8. E. Blum and W. Oettli ,From optimization and variational inequalities to equilibrium problems, Math. Student, 63(1994), 123-145.
  9. A. Brondsted and R. T. Rockafellar, On the subdifferentiability of convex functions, Proc. Am. Math. Soc., 16(1965), 605-611. https://doi.org/10.1090/S0002-9939-1965-0178103-8
  10. F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., 20(1967), 197-228. https://doi.org/10.1016/0022-247X(67)90085-6
  11. P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6(2005), 117-136.
  12. B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73(1967), 957-961. https://doi.org/10.1090/S0002-9904-1967-11864-0
  13. J.-B. Hiriart-Urruty, ${\varepsilon}$-Subdifferential calculus, Convex Analysis and Optimization, Res. Notes in Math., 57(1982), 43-92.
  14. A. Kangtunyakarn, The methods for variational inequality problems and fixed point of ${\kappa}$-strictly pseudononspreading mapping, Fixed Point Theory Appl., 2013:171(2013), 15 pp.
  15. F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math. (Basel), 91(2008), 166-177. https://doi.org/10.1007/s00013-008-2545-8
  16. Y. Kurokawa and W. Takahashi, Weak and strong convergence theorems for non-spreading mappings in Hilbert spaces, Nonlinear Anal., 73(6)(2010), 1562-1568. https://doi.org/10.1016/j.na.2010.04.060
  17. M. O. Osilike and F. O. Isiogugu, Weak and strong convergence theorems for nonspreading-type mappings in Hilbert spaces, Nonlinear Anal., 74(5)(2011), 1814-1822. https://doi.org/10.1016/j.na.2010.10.054
  18. P. Santos and S. Scheimberg, An inexact subgradient algorithm for equilibrium problems, Comput. Appl. Math., 30(2011), 91-107.
  19. W. Takahashi, Introduction to nonlinear and Convex Analysis, Yokohama Publishers, Yokohama, 2009.
  20. S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 331(1)(2007), 506-515. https://doi.org/10.1016/j.jmaa.2006.08.036
  21. E. Thailert, R. Wangkeeree and C. Khantree, A Hybrid subgradient algorithm for finding a common solution of an equilibrium problem and a family of strict pseudo-contraction mappings, J. Appl. Math., (2014), Art. ID 142671, 8 pp.
  22. E. Thailert, R. Wangkeeree and P. Preechasilp, A new general iterative methods for solving the equilibrium problems, variational inequality problems and fixed point problems of nonexpansive mappings, Thai J. Math., 14(1)(2016), 53-67.
  23. H.-K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., 298(2004), 279-291. https://doi.org/10.1016/j.jmaa.2004.04.059