1 |
I. Konnov, Equilibrium Models and Variational Inequalities, Mathematics in Science and Engineering, 210, Elsevier B. V., Amsterdam, 2007.
|
2 |
G. M. Korpelevich, An extragradient method for finding saddle points and for other problems, Ekonom. i Mat. Metody 12 (1976), no. 4, 747-756.
|
3 |
Yu. V. Malitsky and V. V. Semenov, An extragradient algorithm for monotone variational inequalities, Cybernet. Systems Anal. 50 (2014), no. 2, 271-277.
DOI
|
4 |
G. Mastroeni, On auxiliary principle for equilibrium problems, Publicatione del Dipartimento di Mathematica dell, Universita di Pisa, 3 (2000), 1244-1258.
|
5 |
G. Mastroeni, Gap functions for equilibrium problems, J. Global Optim. 27 (2003), no. 4, 411-426.
DOI
|
6 |
A. Moudafi, Proximal point algorithm extended to equilibrium problems, J. Nat. Geom. 15 (1999), no. 1-2, 91-100.
|
7 |
L. D. Muu and W. Oettli, Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal. 18 (1992), no. 12, 1159-1166.
DOI
|
8 |
T. T. V. Nguyen, J. J. Strodiot, and V. H. Nguyen, Hybrid methods for solving simultaneously an equilibrium problem and countably many fixed point problems in a Hilbert space, J. Optim. Theory Appl. 160 (2014), no. 3, 809-831.
DOI
|
9 |
P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), no. 1, 117-136.
|
10 |
J. Contreras, M. Klusch, and J. B. Krawczyk, Numerical solution to Nash-Cournot equilibria in coupled constraint electricity markets, EEE Trans. Power Syst. 19 (2004), 195-206.
DOI
|
11 |
D. V. Hieu, A parallel hybrid method for equilibrium problems, variational inequalities and nonexpansive mappings in Hilbert space, J. Korean Math. Soc. 52 (2015), no. 2, 373-388.
DOI
|
12 |
R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, NJ, 1970.
|
13 |
D. Q. Tran, M. L. Dung, and V. H. Nguyen, Extragradient algorithms extended to equilibrium problems, Optimization 57 (2008), no. 6, 749-776.
DOI
|
14 |
P. T. Vuong, J. J. Strodiot, and V. H. Nguyen, On extragradient-viscosity methods for solving equilibrium and fixed point problems in a Hilbert space, Optimization (2013). DOI: 10.1080/02331934.2012.759327.
DOI
|
15 |
S. D. Flam and A. S. Antipin, Equilibrium programming using proximal-like algorithms, Math. Programming 78 (1997), no. 1, Ser. A, 29-41.
DOI
|
16 |
K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Monographs and Textbooks in Pure and Applied Mathematics, 83, Marcel Dekker, Inc., New York, 1984.
|
17 |
D. V. Hieu, Parallel extragradient-proximal methods for split equilibrium problems, Math. Model. Anal. 21 (2016), no. 4, 478-501.
DOI
|
18 |
D. V. Hieu, P. K. Anh, and L. D. Muu, Modified hybrid projection methods for finding common solutions to variational inequality problems, Comput. Optim. Appl. 66 (2017), no. 1, 75-96.
DOI
|
19 |
D. V. Hieu, L. D. Muu and P. K. Anh, Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings, Numer. Algorithms 73 (2016), no. 1, 197-217.
DOI
|
20 |
D. V. Hieu, Halpern subgradient extragradient method extended to equilibrium problems, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 111 (2017), no. 3, 823-840.
|
21 |
E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), no. 1-4, 123-145.
|
22 |
H. Iiduka, Convergence analysis of iterative methods for nonsmooth convex optimization over fixed point sets of quasi-nonexpansive mappings, Math. Program. 159 (2016), no. 1-2, Ser. A, 509-538.
DOI
|
23 |
A. N. Iusem, G. Kassay, and W. Sosa, On certain conditions for the existence of solutions of equilibrium problems, Math. Program. 116 (2009), no. 1-2, Ser. B, 259-273.
DOI
|
24 |
I. Konnov, Combined Relaxation Methods for Variational Inequalities, Lecture Notes in Economics and Mathematical Systems, 495, Springer-Verlag, Berlin, 2001.
|
25 |
I. Yamada, The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings, in Inherently parallel algorithms in feasibility and optimization and their applications (Haifa, 2000), 473-504, Stud. Comput. Math., 8, North-Holland, Amsterdam, 2001.
|
26 |
P. K. Anh and D. V. Hieu, Parallel hybrid iterative methods for variational inequalities, equilibrium problems, and common fixed point problems, Vietnam J. Math. 44 (2016), no. 2, 351-374.
DOI
|
27 |
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2004.
|
28 |
Y. Censor, A. Gibali, and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl. 148 (2011), no. 2, 318-335.
DOI
|
29 |
Y. Censor, A. Gibali, and S. Reic, Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space, Optim. Methods Softw. 26 (2011), no. 4-5, 827-845.
DOI
|
30 |
Y. Censor, A. Gibali, and S. Reic, Extensions of Korpelevich's extragradient method for the variational inequality problem in Euclidean space, Optimization 61 (2012), no. 9, 1119-1132.
DOI
|
31 |
Y. Censor, A. Gibali, and S. Reic, Algorithms for the split variational inequality problem, Numer. Algorithms 59 (2012), no. 2, 301-323.
DOI
|
32 |
P. L. Combettes, Quasi-Fejerian analysis of some optimization algorithms, in Inherently parallel algorithms in feasibility and optimization and their applications (Haifa, 2000), 115-152, Stud. Comput. Math., 8, North-Holland, Amsterdam, 2001.
|