DOI QR코드

DOI QR Code

APPROXIMATE PROJECTION ALGORITHMS FOR SOLVING EQUILIBRIUM AND MULTIVALUED VARIATIONAL INEQUALITY PROBLEMS IN HILBERT SPACE

  • Received : 2021.08.15
  • Accepted : 2022.02.23
  • Published : 2022.07.31

Abstract

In this paper, we propose new algorithms for solving equilibrium and multivalued variational inequality problems in a real Hilbert space. The first algorithm for equilibrium problems uses only one approximate projection at each iteration to generate an iteration sequence converging strongly to a solution of the problem underlining the bifunction is pseudomonotone. On the basis of the proposed algorithm for the equilibrium problems, we introduce a new algorithm for solving multivalued variational inequality problems. Some fundamental experiments are given to illustrate our algorithms as well as to compare them with other algorithms.

Keywords

Acknowledgement

The authors would like to thank the Editor and the referees for their comments on the manuscript which helped in improving earlier version of this paper.

References

  1. P. N. Anh and J. K. Kim, Outer approximation algorithms for pseudomonotone equilibrium problems, Comput. Math. Appl. 61 (2011), no. 9, 2588-2595. https://doi.org/10.1016/j.camwa.2011.02.052
  2. P. N. Anh, and T. Kuno, A cutting hyperplane method for generalized monotone nonlipschitzian multivalued variational inequalities, In: Modeling, Simulation and Optimization of Complex Processes. Eds: H.G. Bock et al., Springer-Verlag Berlin, Heidelberg, 2012.
  3. P. N. Anh, T. V. Thang, and H. T. C. Thach, Halpern projection methods for solving pseudomonotone multivalued variational inequalities in Hilbert spaces, Numer. Algorithms 87 (2021), no. 1, 335-363. https://doi.org/10.1007/s11075-020-00968-9
  4. P. N. Anh, T. V. Thang, and H. T. C. Thach, A subgradient proximal method for solving a class of monotone multivalued variational inequality problems, Numer. Algorithms 89 (2022), no. 1, 409-430. https://doi.org/10.1007/s11075-021-01119-4
  5. D. P. Bertsekas and E. M. Gafni, Projection methods for variational inequalities with application to the traffic assignment problem, Mathematical Programming Study No. 17 (1982), 139-159. https://doi.org/10.1007/bfb0120965
  6. E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), no. 1-4, 123-145.
  7. Y. Censor, A. Gibali, and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl. 148 (2011), no. 2, 318-335. https://doi.org/10.1007/s10957-010-9757-3
  8. B. V. Dinh and L. D. Muu, A projection algorithm for solving pseudomonotone equilibrium problems and its application to a class of bilevel equilibria, Optimization 64 (2015), no. 3, 559-575. https://doi.org/10.1080/02331934.2013.773329
  9. Q. L. Dong, Y. J. Cho, L. L. Zhong, and T. M. Rassias, Inertial projection and contraction algorithms for variational inequalities, J. Global Optim. 70 (2018), no. 3, 687-704. https://doi.org/10.1007/s10898-017-0506-0
  10. F. Facchinei and J.-S. Pang, Finite-dimensional variational inequalities and complementarity problems. Vol. I, Springer Series in Operations Research, Springer-Verlag, New York, 2003.
  11. M. Fukushima, A relaxed projection method for variational inequalities, Math. Program. 35 (1986), no. 1, 58-70. https://doi.org/10.1007/BF01589441
  12. K. Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, 28, Cambridge University Press, Cambridge, 1990. https://doi.org/10.1017/CBO9780511526152
  13. D. V. Hieu, Halpern subgradient extragradient method extended to equilibrium problems, Rev. R. Acad. Cienc. Exactas F'is. Nat. Ser. A Mat. RACSAM 111 (2017), no. 3, 823-840. https://doi.org/10.1007/s13398-016-0328-9
  14. D. V. Hieu, Modified subgradient extragradient algorithm for pseudomonotone equilibrium problems, Bull. Korean Math. Soc. 55 (2018), no. 5, 1503-1521. https://doi.org/10.4134/BKMS.b170868
  15. A. N. Iusem and W. Sosa, On the proximal point method for equilibrium problems in Hilbert spaces, Optimization 59 (2010), no. 8, 1259-1274. https://doi.org/10.1080/02331931003603133
  16. J. K. Kim, P. N. Anh, and H. G. Hyun, A proximal point-type algorithm for pseudomonotone equilibrium problems, Bull. Korean Math. Soc. 49 (2012), no. 4, 749-759. https://doi.org/10.4134/BKMS.2012.49.4.749
  17. I. V. Konnov, A combined relaxation method for variational inequalities with nonlinear constraints, Math. Program. 80 (1998), no. 2, Ser. A, 239-252. https://doi.org/10.1007/BF01581728
  18. G. M. Korpelevic, An extragradient method for finding saddle points and for other problems, Ekonomika i matematicheskie metody 12 (1976), no. 4, 747-756.
  19. S. Laszlo, Multivalued variational inequalities and coincidence point results, J. Math. Anal. Appl. 404 (2013), no. 1, 105-114. https://doi.org/10.1016/j.jmaa.2013.03.007
  20. H. Liu and J. Yang, Weak convergence of iterative methods for solving quasimonotone variational inequalities, Comput. Optim. Appl. 77 (2020), no. 2, 491-508. https://doi.org/10.1007/s10589-020-00217-8
  21. P.-E. Mainge, A hybrid extragradient-viscosity method for monotone operators and fixed point problems, SIAM J. Control Optim. 47 (2008), no. 3, 1499-1515. https://doi.org/10.1137/060675319
  22. G. Mastroeni, On auxiliary principle for equilibrium problems, in Equilibrium problems and variational models (Erice, 2000), 289-298, Nonconvex Optimization and Its Applications 68, Kluwer Acad. Publ., Norwell, MA, 2003. https://doi.org/10.1007/978-1-4613-0239-1_15
  23. L. D. Muu and W. Oettli, Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal. 18 (1992), no. 12, 1159-1166. https://doi.org/10.1016/0362-546X(92)90159-C
  24. H. ur Rehman, P. Kumam, Y. J. Cho, Y. I. Suleiman, and W. Kumam, Modified Popov's explicit iterative algorithms for solving pseudomonotone equilibrium problems, Optim. Methods Softw. 36 (2021), no. 1, 82-113. https://doi.org/10.1080/10556788.2020.1734805
  25. Y. Shehu, O. S. Iyiola, X. Li, and Q. Dong, Convergence analysis of projection method for variational inequalities, Comput. Appl. Math. 38 (2019), no. 4, Paper No. 161, 21 pp. https://doi.org/10.1007/s40314-019-0955-9
  26. T. V. Thang, Inertial subgradient projection algorithms extended to equilibrium problems, Bull. Iranian Math. Soc. (2021), (Online first). https://link.springer.com/article/10.1007/s41980-021-00649-w
  27. T. V. Thang, and N. M. Khoa, Halpern subgradient method for pseudomonotone equilibrium problems in Hilbert spaces, Kyungpook Math. J. (2021), (Accepted).
  28. D. Q. Tran, M. L. Dung, and V. H. Nguyen, Extragradient algorithms extended to equilibrium problems, Optimization 57 (2008), no. 6, 749-776. https://doi.org/10.1080/02331930601122876
  29. P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim. 38 (2000), no. 2, 431-446. https://doi.org/10.1137/S0363012998338806
  30. P. T. Vuong, J. J. Strodiot, and V. H. Nguyen, On extragradient-viscosity methods for solving equilibrium and fixed point problems in a Hilbert space, Optimization 64 (2015), no. 2, 429-451. https://doi.org/10.1080/02331934.2012.759327