• 제목/요약/키워드: pseudo-Einstein

검색결과 22건 처리시간 0.024초

ON NON-PROPER PSEUDO-EINSTEIN RULED REAL HYPERSURFACES IN COMPLEX SPACE FORMS

  • Suh, Young-Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • 제36권2호
    • /
    • pp.315-336
    • /
    • 1999
  • In the paper [12] we have introduced the new kind of pseudo-einstein ruled real hypersurfaces in complex space forms $M_n(c), c\neq0$, which are foliated by pseudo-Einstein leaves. The purpose of this paper is to give a geometric condition for non-proper pseudo-Einstein ruled real hypersurfaces to be totally geodesic in the sense of Kimura [8] for c> and Ahn, Lee and the present author [1] for c<0.

  • PDF

ON A TYPE OF GENERALIZED SYMMETRIC MANIFOLDS

  • Kumar, Rajesh
    • Communications of the Korean Mathematical Society
    • /
    • 제34권3호
    • /
    • pp.921-934
    • /
    • 2019
  • The object of the present paper is to study generalized pseudo-projectively symmetric manifolds and Einstein generalized pseudo-projectively symmetric manifolds. Finally, the existence of generalized pseudo-projectively symmetric manifolds have been proved by two non-trivial examples.

ON A CLASS OF N(κ)-QUASI EINSTEIN MANIFOLDS

  • De, Avik;De, Uday Chand;Gazi, Abul Kalam
    • Communications of the Korean Mathematical Society
    • /
    • 제26권4호
    • /
    • pp.623-634
    • /
    • 2011
  • The object of the present paper is to study N(${\kappa}$)-quasi Einstein manifolds. Existence of N(${\kappa}$)-quasi Einstein manifolds are proved. Physical example of N(${\kappa}$)-quasi Einstein manifold is also given. Finally, Weyl-semisymmetric N(${\kappa}$)-quasi Einstein manifolds have been considered.

Symmetry Properties of 3-dimensional D'Atri Spaces

  • Belkhelfa, Mohamed;Deszcz, Ryszard;Verstraelen, Leopold
    • Kyungpook Mathematical Journal
    • /
    • 제46권3호
    • /
    • pp.367-376
    • /
    • 2006
  • We investigate semi-symmetry and pseudo-symmetry of some 3-dimensional Riemannian manifolds: the D'Atri spaces, the Thurston geometries as well as the ${\eta}$-Einstein manifolds. We prove that all these manifolds are pseudo-symmetric and that many of them are not semi-symmetric.

  • PDF

ON CONFORMAL AND QUASI-CONFORMAL CURVATURE TENSORS OF AN N(κ)-QUASI EINSTEIN MANIFOLD

  • Hosseinzadeh, Aliakbar;Taleshian, Abolfazl
    • Communications of the Korean Mathematical Society
    • /
    • 제27권2호
    • /
    • pp.317-326
    • /
    • 2012
  • We consider $N(k)$-quasi Einstein manifolds satisfying the conditions $C({\xi},\;X).S=0$, $\tilde{C}({\xi},\;X).S=0$, $\bar{P}({\xi},\;X).C=0$, $P({\xi},\;X).\tilde{C}=0$ and $\bar{P}({\xi},\;X).\tilde{C}=0$ where $C$, $\tilde{C}$, $P$ and $\bar{P}$ denote the conformal curvature tensor, the quasi-conformal curvature tensor, the projective curvature tensor and the pseudo projective curvature tensor, respectively.

Real Hypersurfaces in the Complex Projective Space with Pseudo Ricci-Bourguignon Solitions

  • Doo Hyun Hwang;Young Jin Suh
    • Kyungpook Mathematical Journal
    • /
    • 제64권3호
    • /
    • pp.435-459
    • /
    • 2024
  • First, we give a complete classification of pseudo Ricci-Bourguignon soliton on real hypersurfaces in the complex projective space ℂPn = SUn+1/S(U1·Un). Next, as an application, we give a complete classification of gradient pseudo Ricci-Bourguignon soliton on real hypersurfaces in the complex projective space ℂPn.

On Conformally at Almost Pseudo Ricci Symmetric Mani-folds

  • De, Uday Chand;Gazi, Abul Kalam
    • Kyungpook Mathematical Journal
    • /
    • 제49권3호
    • /
    • pp.507-520
    • /
    • 2009
  • The object of the present paper is to study conformally at almost pseudo Ricci symmetric manifolds. The existence of a conformally at almost pseudo Ricci symmetric manifold with non-zero and non-constant scalar curvature is shown by a non-trivial example. We also show the existence of an n-dimensional non-conformally at almost pseudo Ricci symmetric manifold with vanishing scalar curvature.

EINSTEIN SPACES AND CONFORMAL VECTOR FIELDS

  • KIM DONG-SOO;KIM YOUNG HO;PARK SEONG-HEE
    • Journal of the Korean Mathematical Society
    • /
    • 제43권1호
    • /
    • pp.133-145
    • /
    • 2006
  • We study Riemannian or pseudo-Riemannian manifolds which admit a closed conformal vector field. Subject to the condition that at each point $p{\in}M^n$ the set of conformal gradient vector fields spans a non-degenerate subspace of TpM, using a warped product structure theorem we give a complete description of the space of conformal vector fields on arbitrary non-Ricci flat Einstein spaces.