KYUNGPOOK Math. J. 46(2006), 367-376

Symmetry Properties of 3-dimensional D'Atri Spaces

Mohamed Belkhelfa

Laboratoire de Physique Quantique de la Matière et Modélisations, Mathématiques - L.P.Q. 3M, Centre Universitaire, Mustapha Stambouli de Mascara, Route de Mamounia, Mascara 29000, Algeria e-mail: Mohamed.Belkhelfa@gmail.com

RYSZARD DESZCZ Department of Mathematics, Agricultural University of Wrocław, Grunwaldzka 53, 50-357 Wrocław, Poland e-mail: rysz@ozi.ar.wroc.pl

LEOPOLD VERSTRAELEN Department of Mathematics, Catholic University Leuven, Celestijnenlaan 200 B, B - 3001 Leuven, Belgium e-mail: Leopold.Verstraelen@wis.kuleuven.ac.be

ABSTRACT. We investigate semi-symmetry and pseudo-symmetry of some 3-dimensional Riemannian manifolds: the D'Atri spaces, the Thurston geometries as well as the η -Einstein manifolds. We prove that all these manifolds are pseudo-symmetric and that many of them are not semi-symmetric.

1. D'Atri space

A Riemannian manifold is a D'Atri space if its local geodesic symmetries are volume preserving, or equivalently are divergence preserving ([9], [16], [25]). O. Kowalski proved that a connected and complete D'Atri space of dimension 3 is isometric to one of the following manifolds: (i) Riemannian symmetric spaces: \mathbb{R}^3 , $S^3(c)$, $H^3(-c)$, $S^2 \times \mathbb{R}$, $H^2(-c) \times \mathbb{R}$, where c is a positive constant, or (ii) the group $SU(2) \equiv S^3$, the universal covering group of $SL(2,\mathbb{R})$, or the Heisenberg

group H_3 of all real matrix of the form $\begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix}$ with any left invariant metric.

The metrics of 3-dimensional D'Atri spaces except for the metric of H^3 have the

Received February 17, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 53B25, 53B30, 53C25.

Key words and phrases: Heisenberg space, D'Atri space, Thurston geometry, semisymmetry, pseudo-symmetry, η -Einstein manifold, warped product.

Research supported by the Fund for Scientific Research-Flanders (F.W.O.) Belgium through project G.0366.98 for the first named author.

form ([8], [24]):

$$g = \frac{dx^2 + dy^2}{(1 + m(x^2 + y^2))^2} + (dz + \frac{l}{2} \frac{ydx - xdy}{1 + m(x^2 + y^2)})^2, \quad l, \ m \in \mathbb{R},$$

which were studied already by L. Bianchi, E. Cartan and G. Vrançeanu ([3], [7], [8], [24]). According to [20] we have: if m = 0 and $l \neq 0$ then $M \equiv H_3$, or if m > 0 and $l \neq 0$ then $M \equiv SU(2)$, or if m < 0 and $l \neq 0$ then $M \equiv SL(2, \mathbb{R})$, or if m > 0 and l = 0 then $M \equiv S^2 \times \mathbb{R}$, or if m < 0 and l = 0 then $M \equiv H^2 \times \mathbb{R}$, or if $4m - l^2 = 0$ then M is a real space forms of positive or zero curvature.

With respect to the above classification, we will investigate the property of pseudosymmetry of H_3 , SU(2) and $\widetilde{SL(2,\mathbb{R})}$.

Let X_1, \dots, X_n be an orthonormal moving frame on a Riemanian manifold (M, g), $n = \dim M \ge 3$, and let ω^i and ω^i_j be the dual forms and the connection forms for this moving frame. Then the structure equations of (M, g) are given by:

$$d\omega^{i} = -\omega_{j}{}^{i} \wedge \omega^{j}, \quad d\omega_{j}{}^{i} = -\omega_{k}{}^{i} \wedge \omega_{j}{}^{k} + \frac{1}{2}R^{i}_{jkl}\omega^{k} \wedge \omega^{l},$$

where R_{jkl}^i are the local components of the Riemann curvature tensor of (M, g). The basis and the dual basis of 3-dimensional D'Atri space are given by:

$$X = (1 + m(x^2 + y^2)) \frac{\partial}{\partial x} - \frac{l}{2}y \frac{\partial}{\partial z}, \quad Y = (1 + m(x^2 + y^2)) \frac{\partial}{\partial y} + \frac{l}{2}x \frac{\partial}{\partial z}, \quad \xi = \frac{\partial}{\partial z},$$

and

$$\omega^{1} = \frac{dx}{1 + m(x^{2} + y^{2})}, \qquad \omega^{2} = \frac{dy}{1 + m(x^{2} + y^{2})}, \qquad \omega^{3} = dz + \frac{l}{2} \frac{ydx - xdy}{1 + m(x^{2} + y^{2})}.$$

The eigenvalues ρ_i , i = 1, 2, 3, of the Ricci tensor and the scalar curvature κ of (M, g) are the following

(1)
$$\rho_1 = \rho_2 = 4m - \frac{l^2}{2}, \quad \rho_3 = \frac{l^2}{2}, \quad \kappa = 8m - \frac{l^2}{2}.$$

Let $(M, g), n \geq 3$, be a semi-Riemannian manifold. We consider the endomorphisms $X \wedge_g Y$ and $\mathcal{R}(X, Y)$ of (M, g) defined by

$$\begin{split} X \wedge_g Y &= g(Y,Z)X - g(X,Z)Y, \\ \mathcal{R}(X,Y)Z &= \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z, \end{split}$$

where ∇ is the Levi-Civita connection, κ the scalar curvature and S the Ricci operator of (M,g). The Ricci tensor S and the Ricci operator S of (M,g) are related by S(X,Y) = g(SX,Y). The Riemann curvature tensor R and the tensor G of (M,g) are defined by

$$R(X_1, X_2, X_3, X_4) = g(\mathcal{R}(X_1, X_2)X_3, X_4),$$

$$G(X_1, X_2, X_3, X_4) = g((X_1 \wedge_g X_2)X_3, X_4),$$

368

respectively. For a (0, k)-tensor $T, k \ge 1$, on M we define the (0, k+2)-tensors $R \cdot T$ and Q(g, T) by

$$(R \cdot T)(X_1, X_2, \cdots, X_k; X, Y) = (\mathcal{R}(X, Y) \cdot T)(X_1, X_2, \cdots, X_k) = -T(\mathcal{R}(X, Y)X_1, X_2, \cdots, X_k) - \cdots - T(X_1, X_2, \cdots, \mathcal{R}(X, Y)X_k),$$

$$Q(g,T)(X_1, X_2, \cdots, X_k; X, Y) = ((X \wedge_g Y) \cdot T)(X_1, X_2, \cdots, X_k) = - T((X \wedge Y)X_1, X_2, \cdots, X_k) - \cdots - T(X_1, X_2, \cdots, X_{k-1}, (X \wedge_g Y)X_k).$$

If we set in the above formulas T = R, then we obtain the tensors: $R \cdot R$ and Q(g, R).

A semi-Riemannian manifold (M, g), $n \ge 3$, is called semi- symmetric if $R \cdot R = 0$ on M. A semi-Riemannian manifold (M, g), $n \ge 3$, is said to be pseudo-symmetric ([10], [12], [23], [26]) if at every point of M the tensors $R \cdot R$ and Q(g, R) are linearly dependent. Thus we see that (M, g) is pseudo-symmetric if and only if

(2)
$$R \cdot R = L_R Q(g, R)$$

on $U_R = \{x \in M | R - \frac{\kappa}{n(n-1)}G \neq 0 \text{ at } x\}$, where L_R is some function on U_R . The condition (2) arose during the study on totally umbilical submanifolds of semi-symmetric manifolds as well as when considering geodesic mappings of semi-symmetric manifolds ([10], [23]). Every semi-symmetric manifold is pseudo-symmetric. The converse statement is not true (see e.g. [11]). A pseudo-symmetric space which is not semi-symmetric is said to be a proper pseudo-symmetric space. We will denote the class of space forms by R_0 . Locally symmetric spaces ($\nabla R = 0$) form a generalization of the space forms. We will denote this class of manifolds by R_1 . Similarly, the semi-symmetric manifolds form a generalization of the locally symmetric spaces. We will denote this class of manifolds by R_2 . Finally, the pseudo-symmetric spaces form a generalization of the semi-symmetric manifolds by R_3 . Thus we have $R_0 \subset R_1 \subset R_2 \subset R_3$. In addition, all inclusions being proper ones, provided that $n \geq 4$, ([2], [10], [12], [13], [23]). We recall that $(M, g), n \geq 3$, is said to be quasi-Einstein if at every $x \in M$ its Ricci tensor S has the form

(3)
$$S = \alpha g + \beta \omega \otimes \omega, \quad \alpha, \beta \in \mathbb{R}, \quad \omega \in T_x^* M.$$

Theorem A ([14]). A 3-dimensional semi-Riemannian manifold is pseudo-symmetric if and only if it is quasi-Einstein.

Proposition B ([10], [12]). For a 3-dimensional quasi-Einstein Riemannian manifold (M, g), for which $\rho_1 = \rho_2 \neq \rho_3$ on M, we have $R \cdot R = \frac{\rho_3}{2} Q(g, R)$.

Consequently, we have

Theorem 1. Every 3-dimensional D'Atri space is pseudo-symmetric.

Proof. The eigenvalues of the Ricci tensor of D'Atri spaces are $\rho_1 = \rho_2 = 4m - \frac{l^2}{2}$, $\rho_3 = \frac{l^2}{2}$. Thus by Proposition B we have $R \cdot R = \frac{l^2}{4}Q(g,R)$.

We note that for every D'Atri space we have $S = (4m - \frac{l^2}{2})g + (l^2 - 4m)\omega \otimes \omega$, where ω is a 1-form with the local components $\omega_h = \delta_h^1$. Using the above results we obtain,

Proposition 2. The D'Atri spaces: $S^2 \times \mathbb{R}, H^2 \times \mathbb{R}$, are non-Einstein semisymmetric manifolds. Moreover, the D'Atri spaces H_3 , SU(2) and $\widetilde{SL(2,\mathbb{R})}$ are proper pseudo-symmetric spaces.

Let M^{2n+1} be a (2n + 1)-dimensional differentiable manifold, and let ϕ , ξ and η be a tensor field of type (1, 1), a vector field and a 1-form on M^{2n+1} , respectively. If the following conditions are satisfied: $\phi^2 X = -X + \eta(X)\xi$, $\phi\xi = 0$, $\eta(\phi X) = 0$, $\eta(\xi) = 1$, for any $X \in \chi(M^{2n+1})$, then M^{2n+1} admits an almost contact structure (ϕ, ξ, η) and is called an almost contact manifold. An almost contact structure on M^{2n+1} is said to be normal if the Nijenhuis tensor N_{ϕ} formed with ϕ , $N_{\phi}(X, Y) = \phi^2[X, Y] + [\phi X, \phi Y] - \phi[\phi X, Y] - \phi[X, \phi Y]$, satisfies $N_{\phi} + 2d\eta \otimes \xi = 0$.

If a Riemannian metric g is given on M^{2n+1} such that $g(\phi X, \phi Y) = g(X, Y) - g(X, Y)$ $\eta(X)\eta(Y), \ \eta(X) = g(\xi, X), \text{ for any } X, Y \in \chi(M^{2n+1}), \text{ then } (\phi, \xi, \eta, g) \text{ is called}$ an almost contact metric structure and M^{2n+1} is called an almost contact metric manifold. If, in addition, $d\eta(X,Y) = g(X,\phi Y)$, for all $X,Y \in \chi(M^{2n+1})$, then an almost contact metric structure is called a contact metric structure. It is called a K-contact structure if the characteristic vector field ξ is a Killing vector field. The normal contact metric structure is called a Sasakian structure and a manifold with Sasakian structure is called a Sasakian manifold. Let M^{2n+1} be a contact metric manifold with contact metric structure (η, q, ξ, ϕ) . M^{2n+1} is said to be η -Einstein if the Ricci tensor is of the form $S(X,Y) = ag(X,Y) + b\eta(X)\eta(Y)$, where a and b are some functions on M^{2n+1} . It is known that if M^{2n+1} is a K-contact η -Einstein manifold, with n > 1, then the functions a and b are constant. Every Kcontact three-manifold is η -Einstein. Every K-contact three-manifold is Sasakian, a Sasakian manifold of constant ϕ sectional curvature is an η -Einstein. For more details we refer to [4] and [19]. There are examples of non-Sasakian η -Einstein contact metric manifolds ([4], [5]).

Proposition C ([5]). Let $M^3(\phi, \xi, \eta, g)$ be a contact metric manifold. Then any of the following three conditions is equivalent to each other:

- (i) M^3 is η -Einstein,
- (ii) $\mathcal{S}\phi = \phi \mathcal{S}$,
- (iii) $R(X,Y)\xi = k(\eta(Y)X \eta(X)Y).$

Theorem D ([5]). Let M^3 be a contact metric manifold on which $S\phi = \phi S$. Then

 M^3 is either Sasakian, flat or of constant ξ -sectional curvature $K(X,\xi) = k < 1$ and constant ϕ -sectional curvature $K(X, \phi X) = -k$.

Using the above results we obtain,

Theorem 3. Every 3-dimensional η - Einstein manifold is pseudo-symmetric. More precisely, $R \cdot R = k Q(q, R)$.

Corollary 4. Every 3-dimensional K-contact manifold is pseudo-symmetric, with $R \cdot R = Q(q, R).$

Corollary 5. Every 3-dimensional Sasakian space form is pseudo-symmetric.

Example 1.1 ([1]). Let (x, y, z) be a standard coordinates on \mathbb{R}^3 and let η be the 1-form $\eta = \frac{1}{2}(dz - ydx)$. We set $\xi = 2(\frac{\partial}{\partial z})$ and we define the matrix of ϕ by $\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & y & 0 \end{pmatrix}$. In addition, we have $\eta(\xi) = 1$ and $\phi^2 = -I + \eta \otimes \xi$. So

 (ϕ,ξ,η) is an almost contact structure on \mathbb{R}^3 . We define the metric tensor g by $g = \frac{1}{4}(dx^2 + dy^2) + \eta \otimes \eta$. The vector fields $X = 2\left(\frac{\partial}{\partial x} + y\frac{\partial}{\partial z}\right), Y = 2\left(\frac{\partial}{\partial y}\right)$ and $\xi = 2\left(\frac{\partial}{\partial z}\right)$ form an ϕ -orthonormal basis $\phi X = -Y, \ \phi Y = X, \ \phi \xi = 0$. Thus $(\mathbb{R}^3, \eta, \phi, \xi, g)$ is a Sasakian space form, denoted by $\mathbb{R}^3(-3)$. The Ricci curvatures are the following: $\rho_1 = \rho_2 = -1$, and $\rho_3 = 2$.

Consequently we have

Proposition 6. The Sasakian space form $\mathbb{R}^{3}(-3)$ is a proper pseudo-symmetric manifold. More precisely, on $\mathbb{R}^3(-3)$ we have $R \cdot R = Q(q, R) \neq 0$.

Theorem 7. Let (M, q) be a 3-dimensional semi-Riemannian manifold and let X, Y, ξ be an orthonormal basis of T_xM , $x \in M$. If the following two conditions noted by (C): $R(X,Y)X_i = \alpha (X \wedge_q Y)X_i$ and $R(X,\xi)X_i = \beta (X \wedge_q \xi)X_i$, are satisfied, where α and β are functions on $M, X_i \in \{X, Y, \xi\}$, then M is pseudosymmetric.

Proof. Any semi-Riemannian manifold (M, g), n = 3, satisfying the condition (C) is quasi-Einstein. Thus it is also pseudo-symmetric.

We remark that the 3-dimensional Sasakian manifolds satisfy the condition (\mathbf{C}) .

In the next section we present examples of 3-dimensional manifolds satisfying the condition (C) with nonconstant functions α and β and examples of pseudosymmetric manifolds which are not D'Atri spaces.

2. Warped products

Let (M_1,\overline{g}) and (M_2,\widetilde{g}) , dim $M_1 = p$, dim $M_2 = n - p$, $1 \leq p < n$, be semi-Riemannian manifolds covered by systems of charts $\{U; x^a\}$ and $\{V; y^\alpha\}$, respectively. Let F be a positive smooth function on M_1 . The warped product
$$\begin{split} &M_1\times_F M_2 \text{ of } (M_1,\overline{g}) \text{ and } (M_2,\widetilde{g}) \text{ is the product manifold } M_1\times M_2 \text{ with the metric } g=\overline{g}\times_F \widetilde{g}=\pi_1^*\overline{g}+(F\circ\pi_1)\pi_2^*\widetilde{g}, \text{ where } \pi_i:M_1\times M_2\to M_i,\ i=1,2,\text{ being the natural projections ([18]). The local components } g_{rs} \text{ of the metric } g=\overline{g}\times_F \widetilde{g}, \text{ which may not vanish identically are the following: } g_{ab}=\overline{g}_{ab},\ g_{\alpha\beta}=F\widetilde{g}_{\alpha\beta}, \text{ where } a,b,c,d,e,f\in\{1,\cdots,p\},\ \alpha,\beta,\gamma,\delta\in\{p+1,\cdots,n\} \text{ and } r,s,t,u,v,w\in\{1,\cdots,n\}. \\ \text{The local components } \Gamma_{st}^r \text{ of the Levi-Civita connection } \nabla \text{ of } M_1\times_F M_2 \text{ are } \Gamma_{bc}^a=\overline{\Gamma}_{bc}^a, \Gamma_{\beta\gamma}^a=\widetilde{\Gamma}_{\beta\gamma}^a,\ \Gamma_{\alpha\beta}^a=-\frac{1}{2}\overline{g}^{ab}F_b\widetilde{g}_{\alpha\beta}, \Gamma_{\alpha\gamma}^a=\frac{1}{2F}F_a\delta_\beta^\alpha\ \Gamma_{\alpha b}^a=\Gamma_{ab}^a=0. \\ \text{Now the local components } R_{rstu}=g_{rw}(\partial_u\Gamma_{su}^w-\partial_t\Gamma_{su}^w+\Gamma_{vu}^v\Gamma_{vu}^w-\Gamma_{su}^w\Gamma_{vt}^w),\ \partial_u=\frac{\partial}{\partial x^u}, \text{ of the tensor } R \text{ and the local components } S_{ts} \text{ of the tensor } S \text{ of } M_1\times_F M_2 \text{ which may not vanish identically are the following ([11]): } \end{split}$$

(4) $R_{abcd} = \overline{R}_{abcd}$,

(5)
$$R_{\alpha a b \beta} = -\frac{1}{2} T_{a b} \tilde{g}_{\alpha \beta},$$

(6)
$$R_{\alpha\beta\gamma\delta} = F\widetilde{R}_{\alpha\beta\gamma\delta} - \frac{\Delta_1 F}{4}\widetilde{G}_{\alpha\beta\gamma\delta}$$

(7)
$$S_{ab} = \overline{S}_{ab} - \frac{n-p}{2F}T_{ab}$$

(8)
$$S_{\alpha\beta} = \widetilde{S}_{\alpha\beta} - \frac{1}{2} \left(tr(T) + \frac{n-p-1}{2F} \Delta_1 F \right) \widetilde{g}_{\alpha\beta} ,$$

(9)
$$T_{ab} = \nabla_b F_a - \frac{F_a F_b}{2F}, \ tr(T) = \overline{g}^{ab} T_{ab}, \ \Delta_1 F = \overline{g}^{ab} F_a F_b,$$

(10)
$$\nabla_b F_a = \partial_b F_a - \Gamma^d_{ab} F_d$$

The scalar curvature κ of the manifold $M_1 \times_F M_2$ is given by

(11)
$$\kappa = \overline{\kappa} + \frac{1}{F}\widetilde{\kappa} - \frac{n-p}{F}\left(tr(T) + \frac{n-p-1}{4F}\Delta_1F\right),$$

where $\overline{\kappa}$ and $\widetilde{\kappa}$ are the scalar curvature of (M_1, \overline{g}) and (M_2, \widetilde{g}) , respectively.

Example 2.1. We consider the warped product $M_1 \times_F M_2$ of a 1-dimensional manifold $(M_1, \overline{g}), \overline{g}_{11} = \varepsilon = \pm 1$ and a 2-dimensional manifold (M_2, \widetilde{g}) with the warping function F. The local components of the Riemannian curvature tensor R and the Ricci tensor S of $M_1 \times_F M_2$ which may not vanish identically are the following

$$\begin{split} R_{1\alpha\beta1} &= -\frac{1}{2} T_{11} \, \tilde{g}_{\alpha\beta} \,= \, -\frac{tr(T)}{2F} \, \overline{g}_{11} g_{\alpha\beta} \,= \, -\frac{tr(T)}{2F} \, G_{1\alpha\beta1} \\ R_{\alpha\beta\gamma\delta} &= \, \frac{1}{F} (\frac{\tilde{\kappa}}{2} - \frac{\Delta_1 F}{2F}) \, G_{\alpha\beta\gamma\delta} \,, \\ S_{11} &= \, -\frac{tr(T)}{2F} g_{11} \,, \\ S_{\alpha\beta} &= \, \left(-\frac{tr(T)}{2F} + \frac{1}{2F} (\frac{\tilde{\kappa}}{2} - \frac{\Delta_1 F}{2F}) \right) g_{\alpha\beta} \,, \end{split}$$

where $\triangle_1 F = \overline{g}^{11}(F_1)^2$, $tr(T) = \frac{1}{2F} \overline{g}^{11}T_{11}$, $T_{11} = \nabla_1 F_1 - \frac{1}{2F} (F_1)^2$, $F_1 = \frac{\partial F}{\partial x^1}$, and $\alpha, \beta, \gamma, \delta \in \{2, 3\}$. From the above formulas we get

$$S = \left(-\frac{tr(T)}{2F} + \frac{1}{2F}\left(\frac{\widetilde{\kappa}}{2} - \frac{\bigtriangleup_1 F}{2F}\right)\right)g - \frac{\varepsilon}{2F}\left(\frac{\widetilde{\kappa}}{2} - \frac{\bigtriangleup_1 F}{2F}\right)\omega \otimes \omega,$$

where $\omega_h = \delta_h^1$ are the local components of the 1-form ω . Thus $M_1 \times_F M_2$ is a quasi-Einstein manifold, and in a consequence of Theorem A, a pseudo-symmetric manifold.

Example 2.2. Let on the set $M_1 = \{(x^1, x^2) \in \mathbb{R}^2, x^1 \in (0, \frac{\pi}{2})\}$ be given a metric tensor \overline{g} , defined by $\overline{g}_{11} = a^2$, $\overline{g}_{12} = \overline{g}_{21} = 0$, $\overline{g}_{22} = a^2 \cos^2 x^1$, where a = const. > 0. It is easy to verify that the local components T_{ab} , $a, b \in \{1, 2\}$, of the tensor $T = \nabla^2 F - \frac{1}{2F} dF \otimes dF$, where F is defined by $F = F(x^1, x^2) = \cos^2 x^1$, are the following: $T_{11} = -\frac{2}{a^2} \cos^2 x^1 \overline{g}_{11}$, $T_{12} = T_{21} = 0$, $T_{22} = \frac{2}{a^2} \sin^2 x^1 \overline{g}_{22}$. Furthermore, we also have $\frac{1}{a^2} = \frac{\overline{\kappa}}{2}$. The local components of the curvature tensor R of $M_1 \times_F M_2$, which may not vanish identically, are the following $R_{abcd} = \frac{\overline{\kappa}}{2} G_{abcd}$, $R_{3ab3} = -\frac{1}{2F} T_{ab}g_{33}$. Using now the above relations we find

$$\begin{split} R_{3113} &= -\frac{1}{2F} T_{11} g_{33} = -\frac{1}{2F} (-\frac{2}{a^2}) F \,\overline{g}_{11} g_{33} = \frac{\overline{\kappa}}{2} \,G_{3113} \,, \\ R_{3123} &= -\frac{1}{2F} \,T_{12} g_{33} = 0, \\ R_{3223} &= -\frac{1}{2F} \,T_{22} g_{33} = -\frac{1}{2F} (\frac{2}{a^2}) \sin^2 x^1 \,\overline{g}_{22} g_{33} = -\frac{1-F}{F} \frac{\overline{\kappa}}{2} \,G_{3223} \,, \\ S_{11} &= \frac{\overline{\kappa}}{2} \overline{g}_{11} - \frac{1}{2F} \,T_{11} = \frac{2}{a^2} \,\overline{g}_{11} = \frac{2}{a^2} \,g_{11} \,, \\ S_{22} &= \frac{\overline{\kappa}}{2} \overline{g}_{22} - \frac{1}{2F} \,T_{22} = \frac{1}{a^2} \,(1 - \tan^2 x^1) \,\overline{g}_{22} = \frac{1}{a^2} \,(1 - \tan^2 x^1) \,g_{22} \\ S_{33} &= \frac{tr(T)}{2} \,\widetilde{g}_{33} \,= \frac{1}{a^2} \,(1 - \tan^2 x^1) \,g_{33} \,. \end{split}$$

From the above formulas we get

$$S = \frac{1}{a^2} \left(1 - \tan^2 x^1 \right) g + \left(\frac{2}{a^2} - \frac{1}{a^2} \left(1 - \tan^2 x^1 \right) a^2 \right) \omega \otimes \omega ,$$

where $\omega_h = \delta_h^1$ are the local components of a 1-form w. Thus $M_1 \times_F M_2$ is a quasi-Einstein manifold, and in a consequence of Theorem A, a pseudo-symmetric manifold.

3. 3-dimensional Thurston geometries

A model geometry (G, M) is a manifold M together with a Lie group G of diffeomorphisms of M such that ([22]): M is connected and simply connected, G

acts transitively on M, with compact point stabilizers, G is not contained in any larger group of diffeomorphisms of M with compact stabilizers of points, and there exists at least one compact manifold of type (modeled on) (G, M).

W. M. Thurston classified the 3-dimensional geometries which are \mathbb{R}^3 , $S^3(c)$, $H^3(-c)$, $S^2 \times \mathbb{R}$, $H^2(-c) \times \mathbb{R}$, SU(2), $\widetilde{SL(2,\mathbb{R})}$, H_3 and the Lie group Sol ([21], [22]). The Lie group Sol is considered as \mathbb{R}^3 endowed with the left invariant metric $ds^2 = e^{2z} dx^2 + e^{-2z} dy^2 + dz^2$. Geometric properties of the eight 3-dimensional Thurston geometries were studied, among others, in [6] and [17].

It is known that the Lie group Sol admit the following family of metrics

$$g = g[\mu_1, \mu_2, \mu_3] = e^{-2\mu_1 z} dx^2 + e^{-2\mu_2 z} dy^2 + \mu_3^2 dz^2$$

where μ_1, μ_2 and μ_3 are real constants and μ_3 is positive. Recently, these metrics have been studied by J. Inoguchi ([15]). The Riemannian curvature R and the Ricci curvatures and the scalar curvature of such metrics are the following ([15]):

$$R_{1212} = -\frac{\mu_1\mu_2}{\mu_3^2}, \ R_{1313} = -\frac{\mu_1^2}{\mu_3^2}, \ R_{2323} = -\frac{\mu_2^2}{\mu_3^2},$$

$$\rho_1 = -\frac{\mu_1(\mu_1 + \mu_2)}{\mu_3^2}, \ \rho_2 = -\frac{\mu_2(\mu_1 + \mu_2)}{\mu_3^2}, \ \rho_3 = -\frac{\mu_1^2 + \mu_2^2}{\mu_3^2}, \\ \kappa = -\frac{2}{\mu_3^2}(\mu_1^2 + \mu_2^2 + \mu_1\mu_2), \ \mu_1 = -\frac{\mu_1(\mu_1 + \mu_2)}{\mu_3^2}, \ \mu_2 = -\frac{\mu_2(\mu_1 + \mu_2)}{\mu_3^2}, \ \mu_3 = -\frac{\mu_1(\mu_1 + \mu_2)}{\mu_3^2}, \ \mu_4 = -\frac{\mu_2(\mu_1 + \mu_2)}{\mu_4^2}, \ \mu_4 = -\frac{\mu_2(\mu_1 + \mu_2)}{\mu_4^2}, \ \mu_4 = -\frac{\mu_2(\mu_1 + \mu_2)}{\mu_4^2}, \ \mu_4 = -\frac{\mu_2(\mu_2 + \mu_2)}{\mu_4^2}, \ \mu_4 =$$

respectively. We have,

Proposition 8. The Riemannian manifold $M^3 = (\mathbb{R}^3, g[\mu_1, \mu_2, \mu_3])$ is pseudosymmetric if and only if $\mu_1 = 0$ or $\mu_2 = 0$ or $\mu_1 = \pm \mu_2$.

Proof. Our assertion is an immediate consequence of Proposition B and the relation

$$(\rho_1 - \rho_2)(\rho_1 - \rho_3)(\rho_2 - \rho_3) = \mu_1 \mu_2 (\mu_1 + \mu_3)(\mu_1 - \mu_2)^3,$$

which holds on M^3 .

From the last proposition it follows that the hyperbolic 3-space $M^3 = H^3(-c^2)$ $(\mu_1 = \mu_2 = c \neq 0)$, the 4-symmetric space M^3 $(\mu_1 + \mu_2 = 0 \text{ and } |\mu_i| = \frac{1}{2})$, and the warped products $(N^2, dx^2 + \mu_3^2 dz^2) \times_{e^{-2\mu_2 z}} \mathbb{R}$ and $(N^2, dy^2 + \mu_3^2 dz^2) \times_{e^{+2\mu_2 z}} \mathbb{R}$ $(\mu_1 \mu_2 = 0)$ are pseudo-symmetric manifolds. \Box Thus we have,

Corollary 9. Every 3-dimensional Thurston's geometry is pseudo-symmetric.

References

 C. Baikoussis and D. E. Blair, On Legendre curves in contact 3-dimensional manifolds, Geometria Dedicata, 49(1994), 135-142.

- [2] M. Belkhelfa, R. Deszcz, M. Głogowska, M. Hotloś, D. Kowalczyk, and L. Verstraelen, On some type of curvature conditions, in: Banach Center Publ., Inst. Math. Polish Acad. Sci., 57(2002), 179-194.
- [3] L. Bianchi, Lezioni sulla teoria dei gruppi continui di transformazioni, Editioni Zanichelli, Bologna, 1928.
- [4] D. E. Blair, Contact manifolds in Riemannian Geometry, Lecture Notes in Math., vol. 509, Springer-Verlag, 1976.
- [5] D. E. Blair, T. Koufogiorgos, and S. Ramesh, A classification of 3-dimensional contact metric manifolds with Qφ = φQ, Kodai Math. J., 13(3)(1990), 391-401.
- [6] F. Borghero and R. Caddeo, Une structure de séparabilité et géodésiques dans les huit géométries tridimensionelles de Thurston, Rend. Mat. Appl Ser., 9(4)(1989), 607-624.
- [7] R. Caddeo, P. Piu, and A. Ratto, So(2)-invariant minimal and constant mean curvature surfaces in 3-dimensional homogeneous spaces, Manuscripta Math., 87(1995), 1-12.
- [8] E. Cartan, Leçons sur la geometrie des espaces de Riemann, second ed., Gauthier-Villards Paris, 1946.
- [9] J. E. D'Atri and H. K. Nickerson, Divergence preserving geodesic symmetries, J. Diff. Geom., 3(1969), 467-476.
- [10] R. Deszcz, On pseudosymmetric spaces, Bull. Soc. Math. Belg., 44(ser. A)(1992), 1–34.
- R. Deszcz, Curvature properties of certain compact pseudosymmetric manifolds, Colloq. Math., 65(1993), 139-147.
- [12] R. Deszcz, On pseudosymmetric manifolds, Dept. Math., Agricultural Univ. Wroclaw, Ser. A, Theory and Methods, Report No. 34, (1995).
- [13] R. Deszcz, On the equivalence of Ricci-semisymmetry and semisymmetry, Dept. Math., Agricultural Univ. Wroclaw, Ser. A, Theory and Methods, Report, No. 64, (1998).
- [14] R. Deszcz, L. Verstraelen, and S. Yaprak, Pseudosymmetric hypersurfaces in 4dimensional spaces of constant curvature, Bull. Inst. Math. Acad. Sinica, 22(1994), 167-179.
- [15] J. Inoguchi, Minimal surfaces in 3-dimensional solvable Lie groups, Chin. Ann. Math., 24B(2003), 73-84.
- [16] O. Kowalski, Space with volume preserving symmetries and related classes of Riemannian manifolds, Rend. Sem. Math. Torino, Fasc. Spec., (1983), 131-159.
- [17] S. Maier, Conformal flatness and self-duality of Thurston-geometries, Proc. Am. Math. Soc., 4(1998), 1165-1172.
- [18] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
- [19] D. Perrone, Torsion and critical metrics on contact three-manifolds, Kodai Math. J., 13(1990), 88-100.

- [20] P. Piu, Sur certain types de distributions non integrables totalement geodesiques, Ph.D. thesis.
- [21] P. Scott, The geometries of 3-manifolds, Bull. Lond. Math. Soc., 15(1983), 401-487.
- [22] W. M. Thurston, Three-dimensional Geometry and Topology, Silvio Levy ed., vol. 1, Princeton University Press, 1997.
- [23] L. Verstraelen, Comments on pseudo-symmetry in sense of R. Deszcz, in: Geometry and Topology of Submanifolds, World Sci. Singapore, VI(1994), 199-209.
- [24] G. Vrançeanu, Leçons de geometrie differentielle, Acad. R. P. Roumanie ed., 1957.
- [25] T. J. Willmore, Riemannian Geometry, Clarendon Press, Oxford, 1993.
- [26] S. Yaprak, Intrinsic and extrinsic differential geometry concerning conditions of pseudo-symmetry, Ph.D. thesis, K.U.Leuven, 1993.