Symmetry Properties of 3-dimensional D'Atri Spaces

Mohamed Belkhelfa
Laboratoire de Physique Quantique de la Matiěre et Modélisations, Mathématiques - L.P.Q. 3M, Centre Universitaire, Mustapha Stambouli de Mascara, Route de Mamounia, Mascara 29000, Algeria
e-mail: Mohamed.Belkhelfa@gmail.com
Ryszard Deszcz
Department of Mathematics, Agricultural University of Wroctaw, Grunwaldzka 53, 50-357 Wroctaw, Poland
e-mail: rysz@ozi.ar.wroc.pl
Leopold Verstraelen
Department of Mathematics, Catholic University Leuven, Celestijnenlaan 200 B, B - 3001 Leuven, Belgium
e-mail: Leopold.Verstraelen@wis.kuleuven.ac.be

Abstract. We investigate semi-symmetry and pseudo-symmetry of some 3-dimensional Riemannian manifolds: the D'Atri spaces, the Thurston geometries as well as the η Einstein manifolds. We prove that all these manifolds are pseudo-symmetric and that many of them are not semi-symmetric.

1. D'Atri space

A Riemannian manifold is a D'Atri space if its local geodesic symmetries are volume preserving, or equivalently are divergence preserving ([9], [16], [25]). O. Kowalski proved that a connected and complete D'Atri space of dimension 3 is isometric to one of the following manifolds: (i) Riemannian symmetric spaces: $\mathbb{R}^{3}, \quad \mathrm{~S}^{3}(c), \quad \mathrm{H}^{3}(-c), \mathrm{S}^{2} \times \mathbb{R}, \quad \mathrm{H}^{2}(-c) \times \mathbb{R}$, where c is a positive constant, or (ii) the group $S U(2) \equiv S^{3}$, the universal covering group of $S L(2, \mathbb{R})$, or the Heisenberg group H_{3} of all real matrix of the form $\left(\begin{array}{ccc}1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1\end{array}\right)$ with any left invariant metric. The metrics of 3-dimensional D'Atri spaces except for the metric of H^{3} have the

Received February 17, 2005.
2000 Mathematics Subject Classification: 53B25, 53B30, 53C25.
Key words and phrases: Heisenberg space, D'Atri space, Thurston geometry, semisymmetry, pseudo-symmetry, η-Einstein manifold, warped product.

Research supported by the Fund for Scientific Research-Flanders (F.W.O.) Belgium through project G.0366.98 for the first named author.
form ([8], [24]):

$$
g=\frac{d x^{2}+d y^{2}}{\left(1+m\left(x^{2}+y^{2}\right)\right)^{2}}+\left(d z+\frac{l}{2} \frac{y d x-x d y}{1+m\left(x^{2}+y^{2}\right)}\right)^{2}, \quad l, m \in \mathbb{R}
$$

which were studied already by L. Bianchi, E. Cartan and G. Vrançeanu ([3], [7], [8], [24]). According to [20] we have: if $m=0$ and $l \neq 0$ then $M \equiv H_{3}$, or if $m>0$ and $l \neq 0$ then $M \equiv S U(2)$, or if $m<0$ and $l \neq 0$ then $M \equiv S \widetilde{S(2, \mathbb{R})}$, or if $m>0$ and $l=0$ then $M \equiv S^{2} \times \mathbb{R}$, or if $m<0$ and $l=0$ then $M \equiv H^{2} \times \mathbb{R}$, or if $4 m-l^{2}=0$ then M is a real space forms of positive or zero curvature.
With respect to the above classification, we will investigate the property of pseudosymmetry of $H_{3}, S U(2)$ and $S \overline{L(2, \mathbb{R})}$.

Let X_{1}, \cdots, X_{n} be an orthonormal moving frame on a Riemanian manifold $(M, g), n=\operatorname{dim} M \geq 3$, and let ω^{i} and ω_{j}^{i} be the dual forms and the connection forms for this moving frame. Then the structure equations of (M, g) are given by:

$$
d \omega^{i}=-\omega_{j}{ }^{i} \wedge \omega^{j}, \quad d \omega_{j}{ }^{i}=-\omega_{k}{ }^{i} \wedge \omega_{j}{ }^{k}+\frac{1}{2} R_{j k l}^{i} \omega^{k} \wedge \omega^{l},
$$

where $R_{j k l}^{i}$ are the local components of the Riemann curvature tensor of (M, g). The basis and the dual basis of 3 -dimensional D'Atri space are given by:
$X=\left(1+m\left(x^{2}+y^{2}\right)\right) \frac{\partial}{\partial x}-\frac{l}{2} y \frac{\partial}{\partial z}, \quad Y=\left(1+m\left(x^{2}+y^{2}\right)\right) \frac{\partial}{\partial y}+\frac{l}{2} x \frac{\partial}{\partial z}, \quad \xi=\frac{\partial}{\partial z}$,
and

$$
\omega^{1}=\frac{d x}{1+m\left(x^{2}+y^{2}\right)}, \quad \omega^{2}=\frac{d y}{1+m\left(x^{2}+y^{2}\right)}, \quad \omega^{3}=d z+\frac{l}{2} \frac{y d x-x d y}{1+m\left(x^{2}+y^{2}\right)} .
$$

The eigenvalues $\rho_{i}, i=1,2,3$, of the Ricci tensor and the scalar curvature κ of (M, g) are the following

$$
\begin{equation*}
\rho_{1}=\rho_{2}=4 m-\frac{l^{2}}{2}, \quad \rho_{3}=\frac{l^{2}}{2}, \quad \kappa=8 m-\frac{l^{2}}{2} . \tag{1}
\end{equation*}
$$

Let $(M, g), n \geq 3$, be a semi-Riemannian manifold. We consider the endomorphisms $X \wedge_{g} Y$ and $\mathcal{R}(X, Y)$ of (M, g) defined by

$$
\begin{aligned}
X \wedge_{g} Y & =g(Y, Z) X-g(X, Z) Y \\
\mathcal{R}(X, Y) Z & =\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z
\end{aligned}
$$

where ∇ is the Levi-Civita connection, κ the scalar curvature and \mathcal{S} the Ricci operator of (M, g). The Ricci tensor S and the Ricci operator \mathcal{S} of (M, g) are related by $S(X, Y)=g(\mathcal{S} X, Y)$. The Riemann curvature tensor R and the tensor G of (M, g) are defined by

$$
\begin{aligned}
& R\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=g\left(\mathcal{R}\left(X_{1}, X_{2}\right) X_{3}, X_{4}\right), \\
& G\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=g\left(\left(X_{1} \wedge_{g} X_{2}\right) X_{3}, X_{4}\right),
\end{aligned}
$$

respectively. For a $(0, k)$-tensor $T, k \geq 1$, on M we define the ($0, k+2$)-tensors $R \cdot T$ and $Q(g, T)$ by

$$
\begin{gathered}
(R \cdot T)\left(X_{1}, X_{2}, \cdots, X_{k} ; X, Y\right)=(\mathcal{R}(X, Y) \cdot T)\left(X_{1}, X_{2}, \cdots, X_{k}\right)= \\
-T\left(\mathcal{R}(X, Y) X_{1}, X_{2}, \cdots, X_{k}\right)-\cdots-T\left(X_{1}, X_{2}, \cdots, \mathcal{R}(X, Y) X_{k}\right), \\
\\
\quad Q(g, T)\left(X_{1}, X_{2}, \cdots, X_{k} ; X, Y\right)=\left(\left(X \wedge_{g} Y\right) \cdot T\right)\left(X_{1}, X_{2}, \cdots, X_{k}\right)= \\
-\quad T\left((X \wedge Y) X_{1}, X_{2}, \cdots, X_{k}\right)-\cdots-T\left(X_{1}, X_{2}, \cdots, X_{k-1},\left(X \wedge_{g} Y\right) X_{k}\right) .
\end{gathered}
$$

If we set in the above formulas $T=R$, then we obtain the tensors: $R \cdot R$ and $Q(g, R)$.

A semi-Riemannian manifold $(M, g), n \geq 3$, is called semi- symmetric if $R \cdot R=0$ on M. A semi-Riemannian manifold (M, g), $n \geq 3$, is said to be pseudo-symmetric ([10], [12], [23], [26]) if at every point of M the tensors $R \cdot R$ and $Q(g, R)$ are linearly dependent. Thus we see that (M, g) is pseudo-symmetric if and only if

$$
\begin{equation*}
R \cdot R=L_{R} Q(g, R) \tag{2}
\end{equation*}
$$

on $U_{R}=\left\{x \in M \left\lvert\, R-\frac{\kappa}{n(n-1)} G \neq 0\right.\right.$ at $\left.x\right\}$, where L_{R} is some function on U_{R}. The condition (2) arose during the study on totally umbilical submanifolds of semi-symmetric manifolds as well as when considering geodesic mappings of semi-symmetric manifolds ([10], [23]). Every semi-symmetric manifold is pseudosymmetric. The converse statement is not true (see e.g. [11]). A pseudo-symmetric space which is not semi-symmetric is said to be a proper pseudo-symmetric space. We will denote the class of space forms by R_{0}. Locally symmetric spaces $(\nabla R=0)$ form a generalization of the space forms. We will denote this class of manifolds by R_{1}. Similarly, the semi-symmetric manifolds form a generalization of the locally symmetric spaces. We will denote this class of manifolds by R_{2}. Finally, the pseudo-symmetric spaces form a generalization of the semi-symmetric manifolds. We will denote this class of manifolds by R_{3}. Thus we have $R_{0} \subset R_{1} \subset R_{2} \subset R_{3}$. In addition, all inclusions being proper ones, provided that $n \geq 4$, ([2], [10], [12], [13], [23]). We recall that $(M, g), n \geq 3$, is said to be quasi-Einstein if at every $x \in M$ its Ricci tensor S has the form

$$
\begin{equation*}
S=\alpha g+\beta \omega \otimes \omega, \quad \alpha, \beta \in \mathbb{R}, \quad \omega \in T_{x}^{\star} M \tag{3}
\end{equation*}
$$

Theorem A ([14]). A 3-dimensional semi-Riemannian manifold is pseudo-symmetric if and only if it is quasi-Einstein.

Proposition B ([10], [12]). For a 3-dimensional quasi-Einstein Riemannian manifold (M, g), for which $\rho_{1}=\rho_{2} \neq \rho_{3}$ on M, we have $R \cdot R=\frac{\rho_{3}}{2} Q(g, R)$.

Consequently, we have

Theorem 1. Every 3-dimensional D'Atri space is pseudo-symmetric.
Proof. The eigenvalues of the Ricci tensor of D'Atri spaces are $\rho_{1}=\rho_{2}=4 m-\frac{l^{2}}{2}$, $\rho_{3}=\frac{l^{2}}{2}$. Thus by Proposition B we have $R \cdot R=\frac{l^{2}}{4} Q(g, R)$.

We note that for every D'Atri space we have $S=\left(4 m-\frac{l^{2}}{2}\right) g+\left(l^{2}-4 m\right) \omega \otimes \omega$, where ω is a 1-form with the local components $\omega_{h}=\delta_{h}^{1}$.
Using the above results we obtain,
Proposition 2. The D'Atri spaces: $S^{2} \times \mathbb{R}, H^{2} \times \mathbb{R}$, are non-Einstein semisymmetric manifolds. Moreover, the D'Atri spaces $H_{3}, S U(2)$ and $\widetilde{S(2, \mathbb{R})}$ are proper pseudo-symmetric spaces.

Let $M^{2 n+1}$ be a $(2 n+1)$-dimensional differentiable manifold, and let ϕ, ξ and η be a tensor field of type $(1,1)$, a vector field and a 1 -form on $M^{2 n+1}$, respectively. If the following conditions are satisfied: $\phi^{2} X=-X+\eta(X) \xi, \phi \xi=0, \eta(\phi X)=0$, $\eta(\xi)=1$, for any $X \in \chi\left(M^{2 n+1}\right)$, then $M^{2 n+1}$ admits an almost contact structure (ϕ, ξ, η) and is called an almost contact manifold. An almost contact structure on $M^{2 n+1}$ is said to be normal if the Nijenhuis tensor N_{ϕ} formed with $\phi, N_{\phi}(X, Y)=$ $\phi^{2}[X, Y]+[\phi X, \phi Y]-\phi[\phi X, Y]-\phi[X, \phi Y]$, satisfies $N_{\phi}+2 d \eta \otimes \xi=0$.

If a Riemannian metric g is given on $M^{2 n+1}$ such that $g(\phi X, \phi Y)=g(X, Y)-$ $\eta(X) \eta(Y), \eta(X)=g(\xi, X)$, for any $X, Y \in \chi\left(M^{2 n+1}\right)$, then (ϕ, ξ, η, g) is called an almost contact metric structure and $M^{2 n+1}$ is called an almost contact metric manifold. If, in addition, $d \eta(X, Y)=g(X, \phi Y)$, for all $X, Y \in \chi\left(M^{2 n+1}\right)$, then an almost contact metric structure is called a contact metric structure. It is called a K-contact structure if the characteristic vector field ξ is a Killing vector field. The normal contact metric structure is called a Sasakian structure and a manifold with Sasakian structure is called a Sasakian manifold. Let $M^{2 n+1}$ be a contact metric manifold with contact metric structure $(\eta, g, \xi, \phi) . M^{2 n+1}$ is said to be η Einstein if the Ricci tensor is of the form $S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y)$, where a and b are some functions on $M^{2 n+1}$. It is known that if $M^{2 n+1}$ is a K-contact η-Einstein manifold, with $n>1$, then the functions a and b are constant. Every Kcontact three-manifold is η-Einstein. Every K-contact three-manifold is Sasakian, a Sasakian manifold of constant ϕ sectional curvature is an η-Einstein. For more details we refer to [4] and [19]. There are examples of non-Sasakian η-Einstein contact metric manifolds ([4], [5]).
Proposition C ([5]). Let $M^{3}(\phi, \xi, \eta, g)$ be a contact metric manifold. Then any of the following three conditions is equivalent to each other:
(i) M^{3} is η-Einstein,
(ii) $\mathcal{S} \phi=\phi \mathcal{S}$,
(iii) $R(X, Y) \xi=k(\eta(Y) X-\eta(X) Y)$.

Theorem D ([5]). Let M^{3} be a contact metric manifold on which $S \phi=\phi S$. Then
M^{3} is either Sasakian, flat or of constant ξ-sectional curvature $K(X, \xi)=k<1$ and constant ϕ-sectional curvature $K(X, \phi X)=-k$.

Using the above results we obtain,
Theorem 3. Every 3-dimensional η - Einstein manifold is pseudo-symmetric. More precisely, $R \cdot R=k Q(g, R)$.

Corollary 4. Every 3-dimensional K-contact manifold is pseudo-symmetric, with $R \cdot R=Q(g, R)$.

Corollary 5. Every 3-dimensional Sasakian space form is pseudo-symmetric.
Example 1.1 ([1]). Let (x, y, z) be a standard coordinates on \mathbb{R}^{3} and let η be the 1 -form $\eta=\frac{1}{2}(d z-y d x)$. We set $\xi=2\left(\frac{\partial}{\partial z}\right)$ and we define the matrix of ϕ by $\left(\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & y & 0\end{array}\right)$. In addition, we have $\eta(\xi)=1$ and $\phi^{2}=-I+\eta \otimes \xi$. So (ϕ, ξ, η) is an almost contact structure on \mathbb{R}^{3}. We define the metric tensor g by $g=\frac{1}{4}\left(d x^{2}+d y^{2}\right)+\eta \otimes \eta$. The vector fields $X=2\left(\frac{\partial}{\partial x}+y \frac{\partial}{\partial z}\right), Y=2\left(\frac{\partial}{\partial y}\right)$ and $\xi=2\left(\frac{\partial}{\partial z}\right)$ form an ϕ-orthonormal basis $\phi X=-Y, \phi Y=X, \phi \xi=0$. Thus $\left(\mathbb{R}^{3}, \eta, \phi, \xi, g\right)$ is a Sasakian space form, denoted by $\mathbb{R}^{3}(-3)$. The Ricci curvatures are the following: $\rho_{1}=\rho_{2}=-1$, and $\rho_{3}=2$.

Consequently we have
Proposition 6. The Sasakian space form $\mathbb{R}^{3}(-3)$ is a proper pseudo-symmetric manifold. More precisely, on $\mathbb{R}^{3}(-3)$ we have $R \cdot R=Q(g, R) \neq 0$.

Theorem 7. Let (M, g) be a 3-dimensional semi-Riemannian manifold and let X, Y, ξ be an orthonormal basis of $T_{x} M, x \in M$. If the following two conditions noted by $(\mathbf{C}): R(X, Y) X_{i}=\alpha\left(X \wedge_{g} Y\right) X_{i}$ and $R(X, \xi) X_{i}=\beta\left(X \wedge_{g} \xi\right) X_{i}$, are satisfied, where α and β are functions on $M, X_{i} \in\{X, Y, \xi\}$, then M is pseudosymmetric.
Proof. Any semi-Riemannian manifold $(M, g), n=3$, satisfying the condition (C) is quasi-Einstein. Thus it is also pseudo-symmetric.

We remark that the 3-dimensional Sasakian manifolds satisfy the condition (\mathbf{C}).
In the next section we present examples of 3-dimensional manifolds satisfying the condition (\mathbf{C}) with nonconstant functions α and β and examples of pseudosymmetric manifolds which are not D'Atri spaces.

2. Warped products

Let $\left(M_{1}, \bar{g}\right)$ and $\left(M_{2}, \widetilde{g}\right), \operatorname{dim} M_{1}=p, \operatorname{dim} M_{2}=n-p, 1 \leq p<n$, be semi-Riemannian manifolds covered by systems of charts $\left\{U ; x^{a}\right\}$ and $\left\{V ; y^{\alpha}\right\}$, respectively. Let F be a positive smooth function on M_{1}. The warped product
$M_{1} \times{ }_{F} M_{2}$ of $\left(M_{1}, \bar{g}\right)$ and $\left(M_{2}, \widetilde{g}\right)$ is the product manifold $M_{1} \times M_{2}$ with the metric $g=\bar{g} \times_{F} \widetilde{g}=\pi_{1}^{*} \bar{g}+\left(F \circ \pi_{1}\right) \pi_{2}^{*} \widetilde{g}$, where $\pi_{i}: M_{1} \times M_{2} \rightarrow M_{i}, i=1,2$, being the natural projections ([18]). The local components $g_{r s}$ of the metric $g=\bar{g} \times{ }_{F} \widetilde{g}$, which may not vanish identically are the following: $g_{a b}=\bar{g}_{a b}, g_{\alpha \beta}=F \widetilde{g}_{\alpha \beta}$, where $a, b, c, d, e, f \in\{1, \cdots, p\}, \alpha, \beta, \gamma, \delta \in\{p+1, \cdots, n\}$ and $r, s, t, u, v, w \in\{1, \cdots, n\}$. The local components $\Gamma_{s t}^{r}$ of the Levi-Civita connection ∇ of $M_{1} \times{ }_{F} M_{2}$ are $\Gamma_{b c}^{a}=\bar{\Gamma}_{b c}^{a}, \Gamma_{\beta \gamma}^{\alpha}=\widetilde{\Gamma}_{\beta \gamma}^{\alpha}, \Gamma_{\alpha \beta}^{a}=-\frac{1}{2} \bar{g}^{a b} F_{b} \widetilde{g}_{\alpha \beta}, \Gamma_{a \gamma}^{\alpha}=\frac{1}{2 F} F_{a} \delta_{\beta}^{\alpha} \Gamma_{\alpha b}^{a}=\Gamma_{a b}^{\alpha}=0$. Now the local components $R_{r s t u}=g_{r w}\left(\partial_{u} \Gamma_{s t}^{w}-\partial_{t} \Gamma_{s u}^{w}+\Gamma_{s t}^{v} \Gamma_{v u}^{w}-\Gamma_{s u}^{v} \Gamma_{v t}^{w}\right), \partial_{u}=\frac{\partial}{\partial x^{u}}$, of the tensor R and the local components $S_{t s}$ of the tensor S of $M_{1} \times_{F} M_{2}$ which may not vanish identically are the following ([11]):

$$
\begin{align*}
R_{a b c d} & =\bar{R}_{a b c d} \tag{4}\\
R_{\alpha a b \beta} & =-\frac{1}{2} T_{a b} \widetilde{g}_{\alpha \beta} \tag{5}\\
R_{\alpha \beta \gamma \delta} & =F \widetilde{R}_{\alpha \beta \gamma \delta}-\frac{\Delta_{1} F}{4} \widetilde{G}_{\alpha \beta \gamma \delta} \tag{6}\\
S_{a b} & =\bar{S}_{a b}-\frac{n-p}{2 F} T_{a b} \tag{7}\\
S_{\alpha \beta} & =\widetilde{S}_{\alpha \beta}-\frac{1}{2}\left(\operatorname{tr}(T)+\frac{n-p-1}{2 F} \Delta_{1} F\right) \widetilde{g}_{\alpha \beta} \tag{8}\\
T_{a b} & =\nabla_{b} F_{a}-\frac{F_{a} F_{b}}{2 F}, \operatorname{tr}(T)=\bar{g}^{a b} T_{a b}, \Delta_{1} F=\bar{g}^{a b} F_{a} F_{b} \tag{9}\\
\nabla_{b} F_{a} & =\partial_{b} F_{a}-\Gamma_{a b}^{d} F_{d} \tag{10}
\end{align*}
$$

The scalar curvature κ of the manifold $M_{1} \times{ }_{F} M_{2}$ is given by

$$
\begin{equation*}
\kappa=\bar{\kappa}+\frac{1}{F} \widetilde{\kappa}-\frac{n-p}{F}\left(\operatorname{tr}(T)+\frac{n-p-1}{4 F} \Delta_{1} F\right) \tag{11}
\end{equation*}
$$

where $\bar{\kappa}$ and $\widetilde{\kappa}$ are the scalar curvature of $\left(M_{1}, \bar{g}\right)$ and $\left(M_{2}, \widetilde{g}\right)$, respectively.
Example 2.1. We consider the warped product $M_{1} \times{ }_{F} M_{2}$ of a 1-dimensional manifold $\left(M_{1}, \bar{g}\right), \bar{g}_{11}=\varepsilon= \pm 1$ and a 2-dimensional manifold $\left(M_{2}, \widetilde{g}\right)$ with the warping function F. The local components of the Riemannian curvature tensor R and the Ricci tensor S of $M_{1} \times{ }_{F} M_{2}$ which may not vanish identically are the following

$$
\begin{aligned}
R_{1 \alpha \beta 1} & =-\frac{1}{2} T_{11} \widetilde{g}_{\alpha \beta}=-\frac{\operatorname{tr}(T)}{2 F} \bar{g}_{11} g_{\alpha \beta}=-\frac{\operatorname{tr}(T)}{2 F} G_{1 \alpha \beta 1} \\
R_{\alpha \beta \gamma \delta} & =\frac{1}{F}\left(\frac{\widetilde{\kappa}}{2}-\frac{\triangle_{1} F}{2 F}\right) G_{\alpha \beta \gamma \delta} \\
S_{11} & =-\frac{\operatorname{tr}(T)}{2 F} g_{11} \\
S_{\alpha \beta} & =\left(-\frac{\operatorname{tr}(T)}{2 F}+\frac{1}{2 F}\left(\frac{\widetilde{\kappa}}{2}-\frac{\triangle_{1} F}{2 F}\right)\right) g_{\alpha \beta}
\end{aligned}
$$

where $\triangle_{1} F=\bar{g}^{11}\left(F_{1}\right)^{2}, \operatorname{tr}(T)=\frac{1}{2 F} \bar{g}^{11} T_{11}, T_{11}=\nabla_{1} F_{1}-\frac{1}{2 F}\left(F_{1}\right)^{2}, F_{1}=\frac{\partial F}{\partial x^{1}}$, and $\alpha, \beta, \gamma, \delta \in\{2,3\}$. From the above formulas we get

$$
S=\left(-\frac{\operatorname{tr}(T)}{2 F}+\frac{1}{2 F}\left(\frac{\widetilde{\kappa}}{2}-\frac{\triangle_{1} F}{2 F}\right)\right) g-\frac{\varepsilon}{2 F}\left(\frac{\widetilde{\kappa}}{2}-\frac{\triangle_{1} F}{2 F}\right) \omega \otimes \omega
$$

where $\omega_{h}=\delta_{h}^{1}$ are the local components of the 1 -form ω. Thus $M_{1} \times{ }_{F} M_{2}$ is a quasi-Einstein manifold, and in a consequence of Theorem A, a pseudo-symmetric manifold.

Example 2.2. Let on the set $M_{1}=\left\{\left(x^{1}, x^{2}\right) \in \mathbb{R}^{2}, x^{1} \in\left(0, \frac{\pi}{2}\right)\right\}$ be given a metric tensor \bar{g}, defined by $\bar{g}_{11}=a^{2}, \bar{g}_{12}=\bar{g}_{21}=0, \bar{g}_{22}=a^{2} \cos ^{2} x^{1}$, where $a=$ const. >0. It is easy to verify that the local components $T_{a b}, a, b \in\{1,2\}$, of the tensor $T=\nabla^{2} F-\frac{1}{2 F} d F \otimes d F$, where F is defined by $F=F\left(x^{1}, x^{2}\right)=\cos ^{2} x^{1}$, are the following: $T_{11}=-\frac{2}{a^{2}} \cos ^{2} x^{1} \bar{g}_{11}, T_{12}=T_{21}=0, T_{22}=\frac{2}{a^{2}} \sin ^{2} x^{1} \bar{g}_{22}$. Furthermore, we also have $\frac{1}{a^{2}}=\frac{\bar{\kappa}}{2}$. The local components of the curvature tensor R of $M_{1} \times{ }_{F} M_{2}$, which may not vanish identically, are the following $R_{a b c d}=\frac{\bar{\kappa}}{2} G_{a b c d}$, $R_{3 a b 3}=-\frac{1}{2 F} T_{a b} g_{33}$. Using now the above relations we find

$$
\begin{aligned}
R_{3113} & =-\frac{1}{2 F} T_{11} g_{33}=-\frac{1}{2 F}\left(-\frac{2}{a^{2}}\right) F \bar{g}_{11} g_{33}=\frac{\bar{\kappa}}{2} G_{3113} \\
R_{3123} & =-\frac{1}{2 F} T_{12} g_{33}=0 \\
R_{3223} & =-\frac{1}{2 F} T_{22} g_{33}=-\frac{1}{2 F}\left(\frac{2}{a^{2}}\right) \sin ^{2} x^{1} \bar{g}_{22} g_{33}=-\frac{1-F}{F} \frac{\bar{\kappa}}{2} G_{3223} \\
S_{11} & =\frac{\bar{\kappa}}{g_{11}}-\frac{1}{2 F} T_{11}=\frac{2}{a^{2}} \bar{g}_{11}=\frac{2}{a^{2}} g_{11} \\
S_{22} & =\frac{\bar{\kappa}}{2} \bar{g}_{22}-\frac{1}{2 F} T_{22}=\frac{1}{a^{2}}\left(1-\tan ^{2} x^{1}\right) \bar{g}_{22}=\frac{1}{a^{2}}\left(1-\tan ^{2} x^{1}\right) g_{22} \\
S_{33} & =\frac{\operatorname{tr}(T)}{2} \widetilde{g}_{33}=\frac{1}{a^{2}}\left(1-\tan ^{2} x^{1}\right) g_{33}
\end{aligned}
$$

From the above formulas we get

$$
S=\frac{1}{a^{2}}\left(1-\tan ^{2} x^{1}\right) g+\left(\frac{2}{a^{2}}-\frac{1}{a^{2}}\left(1-\tan ^{2} x^{1}\right) a^{2}\right) \omega \otimes \omega
$$

where $\omega_{h}=\delta_{h}^{1}$ are the local components of a 1-form w. Thus $M_{1} \times{ }_{F} M_{2}$ is a quasi-Einstein manifold, and in a consequence of Theorem A, a pseudo-symmetric manifold.

3. 3-dimensional Thurston geometries

A model geometry (G, M) is a manifold M together with a Lie group G of diffeomorphisms of M such that ([22]): M is connected and simply connected, G
acts transitively on M, with compact point stabilizers, G is not contained in any larger group of diffeomorphisms of M with compact stabilizers of points, and there exists at least one compact manifold of type (modeled on) (G, M).
W. M. Thurston classified the 3-dimensional geometries which are $\mathbb{R}^{3}, S^{3}(c)$, $\mathrm{H}^{3}(-c), \mathrm{S}^{2} \times \mathbb{R}, \mathrm{H}^{2}(-c) \times \mathbb{R}, S U(2), S \widetilde{L(2, \mathbb{R})}, H_{3}$ and the Lie group Sol ([21], [22]). The Lie group Sol is considered as \mathbb{R}^{3} endowed with the left invariant metric $d s^{2}=e^{2 z} d x^{2}+e^{-2 z} d y^{2}+d z^{2}$. Geometric properties of the eight 3 -dimensional Thurston geometries were studied, among others, in [6] and [17].

It is known that the Lie group Sol admit the following family of metrics

$$
g=g\left[\mu_{1}, \mu_{2}, \mu_{3}\right]=e^{-2 \mu_{1} z} d x^{2}+e^{-2 \mu_{2} z} d y^{2}+\mu_{3}^{2} d z^{2}
$$

where μ_{1}, μ_{2} and μ_{3} are real constants and μ_{3} is positive. Recently, these metrics have been studied by J. Inoguchi ([15]). The Riemannian curvature R and the Ricci curvatures and the scalar curvature of such metrics are the following ([15]):

$$
\begin{gathered}
R_{1212}=-\frac{\mu_{1} \mu_{2}}{\mu_{3}^{2}}, R_{1313}=-\frac{\mu_{1}^{2}}{\mu_{3}^{2}}, R_{2323}=-\frac{\mu_{2}^{2}}{\mu_{3}^{2}} \\
\rho_{1}=-\frac{\mu_{1}\left(\mu_{1}+\mu_{2}\right)}{\mu_{3}^{2}}, \rho_{2}=-\frac{\mu_{2}\left(\mu_{1}+\mu_{2}\right)}{\mu_{3}^{2}}, \rho_{3}=-\frac{\mu_{1}^{2}+\mu_{2}^{2}}{\mu_{3}^{2}}, \kappa=-\frac{2}{\mu_{3}^{2}}\left(\mu_{1}^{2}+\mu_{2}^{2}+\mu_{1} \mu_{2}\right),
\end{gathered}
$$

respectively. We have,
Proposition 8. The Riemannian manifold $M^{3}=\left(\mathbb{R}^{3}, g\left[\mu_{1}, \mu_{2}, \mu_{3}\right]\right)$ is pseudosymmetric if and only if $\mu_{1}=0$ or $\mu_{2}=0$ or $\mu_{1}= \pm \mu_{2}$.
Proof. Our assertion is an immediate consequence of Proposition B and the relation

$$
\left(\rho_{1}-\rho_{2}\right)\left(\rho_{1}-\rho_{3}\right)\left(\rho_{2}-\rho_{3}\right)=\mu_{1} \mu_{2}\left(\mu_{1}+\mu_{3}\right)\left(\mu_{1}-\mu_{2}\right)^{3},
$$

which holds on M^{3}.
From the last proposition it follows that the hyperbolic 3 -space $M^{3}=H^{3}\left(-c^{2}\right)$ ($\mu_{1}=\mu_{2}=c \neq 0$), the 4 -symmetric space $M^{3}\left(\mu_{1}+\mu_{2}=0\right.$ and $\left.\left|\mu_{i}\right|=\frac{1}{2}\right)$, and the warped products $\left(N^{2}, d x^{2}+\mu_{3}^{2} d z^{2}\right) \times_{e^{-2 \mu_{2} z}} \mathbb{R}$ and $\left(N^{2}, d y^{2}+\mu_{3}^{2} d z^{2}\right) \times_{e^{2}+\mu_{2} z} \mathbb{R}$ ($\mu_{1} \mu_{2}=0$) are pseudo-symmetric manifolds.
Thus we have,
Corollary 9. Every 3-dimensional Thurston's geometry is pseudo-symmetric.

References

[1] C. Baikoussis and D. E. Blair, On Legendre curves in contact 3-dimensional manifolds, Geometria Dedicata, 49(1994), 135-142.
[2] M. Belkhelfa, R. Deszcz, M. Głogowska, M. Hotloś, D. Kowalczyk, and L. Verstraelen, On some type of curvature conditions, in: Banach Center Publ., Inst. Math. Polish Acad. Sci., 57(2002), 179-194.
[3] L. Bianchi, Lezioni sulla teoria dei gruppi continui di transformazioni, Editioni Zanichelli, Bologna, 1928.
[4] D. E. Blair, Contact manifolds in Riemannian Geometry, Lecture Notes in Math., vol. 509, Springer-Verlag, 1976.
[5] D. E. Blair, T. Koufogiorgos, and S. Ramesh, A classification of 3-dimensional contact metric manifolds with $Q \phi=\phi Q$, Kodai Math. J., 13(3)(1990), 391-401.
[6] F. Borghero and R. Caddeo, Une structure de séparabilité et géodésiques dans les huit géométries tridimensionelles de Thurston, Rend. Mat. Appl Ser., 9(4)(1989), 607-624.
[7] R. Caddeo, P. Piu, and A. Ratto, So(2)-invariant minimal and constant mean curvature surfaces in 3-dimensional homogeneous spaces, Manuscripta Math., 87(1995), 1-12.
[8] E. Cartan, Leçons sur la geometrie des espaces de Riemann, second ed., GauthierVillards Paris, 1946.
[9] J. E. D'Atri and H. K. Nickerson, Divergence preserving geodesic symmetries, J. Diff. Geom., 3(1969), 467-476.
[10] R. Deszcz, On pseudosymmetric spaces, Bull. Soc. Math. Belg., 44(ser. A)(1992), 1-34.
[11] R. Deszcz, Curvature proprerties of certain compact pseudosymmetric manifolds, Colloq. Math., 65(1993), 139-147.
[12] R. Deszcz, On pseudosymmetric manifolds, Dept. Math., Agricultural Univ. Wroclaw, Ser. A, Theory and Methods, Report No. 34, (1995).
[13] R. Deszcz, On the equivalence of Ricci-semisymmetry and semisymmetry, Dept. Math., Agricultural Univ. Wroclaw, Ser. A, Theory and Methods, Report, No. 64, (1998).
[14] R. Deszcz, L. Verstraelen, and S. Yaprak, Pseudosymmetric hypersurfaces in 4dimensional spaces of constant curvature, Bull. Inst. Math. Acad. Sinica, 22(1994), 167-179.
[15] J. Inoguchi, Minimal surfaces in 3-dimensional solvable Lie groups, Chin. Ann. Math., 24B (2003), 73-84.
[16] O. Kowalski, Space with volume preserving symmetries and related classes of Riemannian manifolds, Rend. Sem. Math. Torino, Fasc. Spec., (1983), 131-159.
[17] S. Maier, Conformal flatness and self-duality of Thurston-geometries, Proc. Am. Math. Soc., 4(1998), 1165-1172.
[18] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
[19] D. Perrone, Torsion and critical metrics on contact three-manifolds, Kodai Math. J., 13(1990), 88-100.
[20] P. Piu, Sur certain types de distributions non integrables totalement geodesiques, Ph.D. thesis.
[21] P. Scott, The geometries of 3-manifolds, Bull. Lond. Math. Soc., 15(1983), 401-487.
[22] W. M. Thurston, Three-dimensional Geometry and Topology, Silvio Levy ed., vol. 1, Princeton University Press, 1997.
[23] L. Verstraelen, Comments on pseudo-symmetry in sense of R. Deszcz, in: Geometry and Topology of Submanifolds, World Sci. Singapore, VI(1994), 199-209.
[24] G. Vrançeanu, Leçons de geometrie differentielle, Acad. R. P. Roumanie ed., 1957.
[25] T. J. Willmore, Riemannian Geometry, Clarendon Press, Oxford, 1993.
[26] Ṣ. Yaprak, Intrinsic and extrinsic differential geometry concerning conditions of pseudo-symmetry, Ph.D. thesis, K.U.Leuven, 1993.

