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ABSTRACT. We investigate semi-symmetry and pseudo-symmetry of some 3-dimensional
Riemannian manifolds: the D’Atri spaces, the Thurston geometries as well as the 7-
Einstein manifolds. We prove that all these manifolds are pseudo-symmetric and that
many of them are not semi-symmetric.

1. D’Atri space

A Riemannian manifold is a D’Atri space if its local geodesic symmetries are
volume preserving, or equivalently are divergence preserving ([9], [16], [25]). O.
Kowalski proved that a connected and complete D’Atri space of dimension 3 is
isometric to one of the following manifolds: (i) Riemannian symmetric spaces:
R3, S%(c), H3(—c), S? x R, H?(—c) x R, where c is a positive constant, or (ii)
the group SU(2) = S3, the universal covering group of SL(2,R), or the Heisenberg

1 =z vy
group Hj of all real matrix of the form | 0 1 2z | with any left invariant metric.
0 0 1

The metrics of 3-dimensional D’Atri spaces except for the metric of H> have the
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form ([8], [24]):

dz? + dy? l dr — xd
2 y2 ; +(dz+ 35 - 2 yz
1+ m(z? +y?)) 2 1+m(22+y2)

which were studied already by L. Bianchi, E. Cartan and G. Vrangeanu ([3], [7], [8],
[24]). According to [20] we have: if m = 0 and [ # 0 then M = Hs, or if m > 0 and

—_~—

1#0then M = SU(2), or if m < 0 and I # 0 then M = SL(2,R), or if m > 0 and
l=0then M =52xR,orifm<0and!=0then M = H?> xR, orif 4m —12 =0
then M is a real space forms of positive or zero curvature.
With respect to the above classification, we will investigate the property of pseudo-
symmetry of Hs, SU(2) and SL(2,R).

Let X;,---,X, be an orthonormal moving frame on a Riemanian manifold
(M,g), n = dim M > 3, and let w* and w? be the dual forms and the connection
forms for this moving frame. Then the structure equations of (M, g) are given by:

g:( )27 l7m€R’

A , . . . 1.
dw' = —w;" AW, dw;' = —wy’ /\wj]C + iR;klwk Aot

where R; 4w are the local components of the Riemann curvature tensor of (M, g).
The basis and the dual basis of 3-dimensional D’Atri space are given by:

o 1 0 o 1 0 0
X=( 2P ———y—, Y=(1 242 =+ -z — ==
(L+m(z”+y7)) 0 27550 (L4+m(z”+y7)) 8y+2x8z’ 3 95
and
dx dy I ydr— zdy
1 2 3
— — :d —_ .
v 14+ m(z2+y2)’ “ 1+ m(22? +9y2)’ v Z+21+m(m2+y2)

The eigenvalues p;, i = 1,2,3, of the Ricci tensor and the scalar curvature k of
(M, g) are the following

2 2 2

9 ,03257 m:8m—§.

Let (M, g), n > 3, be a semi-Riemannian manifold. We consider the endomorphisms
X NgY and R(X,Y) of (M, g) defined by

(1) p1=p2 =4m —

XNY = g(Y,2)X —g(X,2)Y,
R(X,)Y)Z = VxVyZ-VyVxZ-Vixy|Z,

where V is the Levi-Civita connection, x the scalar curvature and S the Ricci
operator of (M,g). The Ricci tensor S and the Ricci operator S of (M, g) are
related by S(X,Y) = g(SX,Y). The Riemann curvature tensor R and the tensor
G of (M, g) are defined by

R(X1, Xo, X3, X4) = g(R(X1, X2) X3, X4),

G(X1, X2, X5, X4) = g((X1 /Ny X2) X3, X4),
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respectively. For a (0, k)-tensor T, k > 1, on M we define the (0, k+2)-tensors R-T
and Q(g,T) by

(R T)(X17X25 e 7Xk;XaY) = (R(Xa Y) : T)(X13X27' te 7Xk) =
_T(R(X7Y)X17X27 T 7Xk?) - T<X17X27' o aR(va)Xk)a

Q(g7T)(X17X27"' 7Xk;X7Y) = ((X /\g Y) 'T)(X17X27"' 7Xk) =
(X AY)X1, Xa, o X)) — o — T(X1, Xa, - X1y (X Ay Y)X).

If we set in the above formulas T' = R, then we obtain the tensors: R - R and
Q(g, R).

A semi-Riemannian manifold (M, g), n > 3, is called semi- symmetric if R-R =0
on M. A semi-Riemannian manifold (M, g), n > 3, is said to be pseudo-symmetric
([10], [12], [23], [26]) if at every point of M the tensors R- R and Q(g, R) are linearly
dependent. Thus we see that (M, g) is pseudo-symmetric if and only if
) R-R=LgQlg.R)
on Up = {r € M|R - @ # 0 at x}, where Lp is some function on
Ug. The condition (2) arose during the study on totally umbilical submanifolds
of semi-symmetric manifolds as well as when considering geodesic mappings of
semi-symmetric manifolds ([10], [23]). Every semi-symmetric manifold is pseudo-
symmetric. The converse statement is not true (see e.g. [11]). A pseudo-symmetric
space which is not semi-symmetric is said to be a proper pseudo-symmetric space.
We will denote the class of space forms by Ry. Locally symmetric spaces (VR = 0)
form a generalization of the space forms. We will denote this class of manifolds
by R;. Similarly, the semi-symmetric manifolds form a generalization of the lo-
cally symmetric spaces. We will denote this class of manifolds by R,. Finally, the
pseudo-symmetric spaces form a generalization of the semi-symmetric manifolds.
We will denote this class of manifolds by R3. Thus we have Ry C Ry C Ry C Rj.
In addition, all inclusions being proper ones, provided that n > 4, ([2], [10], [12],
[13], [23]). We recall that (M,g), n > 3, is said to be quasi-Einstein if at every
x € M its Ricci tensor S has the form

(3) S = ag+Pww, a,feR, weTiM.

Theorem A ([14]). A 3-dimensional semi-Riemannian manifold is pseudo-sym-
metric if and only if it is quasi-Einstein.

Proposition B ([10], [12]). For a 3-dimensional quasi-Einstein Riemannian man-
ifold (M, g), for which py = ps # p3 on M, we have R- R = &> Q(g, R).

Consequently, we have
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Theorem 1. Every 3-dimensional D’Atri space is pseudo-symmetric.

2

Proof. The eigenvalues of the Ricci tensor of D’Atri spaces are p; = py = 4m — %,

p3 = g Thus by Proposition B we have R- R = %Q(g, R). O

We note that for every D’Atri space we have S = (4m — %) g+ (P —4dm)wdw,
where w is a 1-form with the local components wy, = 6;..
Using the above results we obtain,

Proposition 2. The D’Atri spaces: S? x R, H? x R, are non-Einstein semi-

symmetric manifolds. Moreover, the D’Atri spaces Hs, SU(2) and SL(2,R) are
proper pseudo-symmetric spaces.

Let M2"+! be a (2n + 1)-dimensional differentiable manifold, and let ¢, ¢ and
n be a tensor field of type (1,1), a vector field and a 1-form on M?"+1 respectively.
If the following conditions are satisfied: ¢?X = —X + n(X)¢, ¢ = 0, n(¢pX) = 0,
n(€) = 1, for any X € x(M?"*1), then M?"! admits an almost contact structure
(¢,€,7m) and is called an almost contact manifold. An almost contact structure on
M? 1 is said to be normal if the Nijenhuis tensor N, formed with ¢, N,(X,Y) =
P*[X, Y]+ [0X,0Y] — ¢[¢X,Y] — ¢[X, pY], satisfies Ny, + 2dn @ & = 0.

If a Riemannian metric g is given on M?"*1 such that g(¢X,¢Y) = g(X,Y) —
n(X)n(Y), n(X) = g(&,X), for any X,¥ € x(M>™+1), then (,€,7,g) is called
an almost contact metric structure and M?2"*! is called an almost contact metric
manifold. If, in addition, dn(X,Y) = g(X,¢Y), for all X,Y € x(M?**1) then an
almost contact metric structure is called a contact metric structure. It is called
a K-contact structure if the characteristic vector field ¢ is a Killing vector field.
The normal contact metric structure is called a Sasakian structure and a manifold
with Sasakian structure is called a Sasakian manifold. Let M?"*! be a contact
metric manifold with contact metric structure (1, g,&, ¢). M?"*! is said to be 7-
Einstein if the Ricci tensor is of the form S(X,Y) = ag(X,Y) + bn(X)n(Y), where
a and b are some functions on M?"*!. Tt is known that if M?"*! is a K-contact
n-Einstein manifold, with n > 1, then the functions a and b are constant. Every K-
contact three-manifold is n-Einstein. Every K-contact three-manifold is Sasakian,
a Sasakian manifold of constant ¢ sectional curvature is an 7-Einstein. For more
details we refer to [4] and [19]. There are examples of non-Sasakian 7-Einstein
contact metric manifolds ([4], [5]).

Proposition C ([5]). Let M3(¢,£,m,9) be a contact metric manifold. Then any
of the following three conditions is equivalent to each other:

(i) M3 is n-Einstein,
(ii) S¢ = oS,
(i) R(X,Y)E = k(1(Y)X — n(X)Y),

Theorem D ([5]). Let M? be a contact metric manifold on which S¢ = ¢S. Then
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M3 is either Sasakian, flat or of constant &-sectional curvature K(X,&) =k < 1
and constant ¢-sectional curvature K (X, pX) = —k.

Using the above results we obtain,

Theorem 3. Every 3-dimensional - Einstein manifold is pseudo-symmetric. More
precisely, R- R =kQ(g, R).

Corollary 4. FEvery 3-dimensional K-contact manifold is pseudo-symmetric, with

R-R=Q(g,R).
Corollary 5. Every 3-dimensional Sasakian space form is pseudo-symmetric.

Example 1.1 ([1]). Let (z,y,2) be a standard coordinates on R? and let 7 be

the 1-form n = 3(dz — ydx). We set { = 2(%) and we define the matrix of
0O 1 0

by | =1 0 0]. In addition, we have n(§) = 1 and ¢* = —T +n® & So
0 y O

(¢,&,m) is an almost contact structure on R3. We define the metric tensor g by

g = 1(d2z? + dy*) + n ® n. The vector fields X = 2 (8% +ya%), Y = 2(8%) and

£ = 2(%) form an ¢-orthonormal basis ¢X = -Y, ¢Y = X, ¢¢ = 0. Thus

(R3,n, ¢,&,g) is a Sasakian space form, denoted by R?(—3). The Ricci curvatures

are the following: p; = po = —1, and p3 = 2.

Consequently we have

Proposition 6. The Sasakian space form R*(—3) is a proper pseudo-symmetric
manifold. More precisely, on R?*(—3) we have R- R = Q(g, R) # 0.

Theorem 7. Let (M,g) be a 3-dimensional semi-Riemannian manifold and let
X, Y. € be an orthonormal basis of T,M, x € M. If the following two conditions
noted by (C): R(X,Y)X; = a(X Ny V)X, and R(X,6)X; = B(X Ny §)X;, are
satisfied, where « and B are functions on M, X; € {X,Y,£}, then M is pseudo-
symmetric.

Proof. Any semi-Riemannian manifold (M, g), n = 3, satisfying the condition (C)
is quasi-Einstein. Thus it is also pseudo-symmetric. O
We remark that the 3-dimensional Sasakian manifolds satisfy the condition (C).

In the next section we present examples of 3-dimensional manifolds satisfying
the condition (C) with nonconstant functions « and 5 and examples of pseudo-
symmetric manifolds which are not D’Atri spaces.

2. Warped products

Let (My,3) and (Ms,g), dimM; = p, dmMy; = n—p, 1 < p < n, be
semi-Riemannian manifolds covered by systems of charts {U; 2} and {V;y“}, re-
spectively. Let F be a positive smooth function on M;. The warped product
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M x g My of (M1,9) and (M, g) is the product manifold M7 x My with the metric
g=9gxpg=mig+ (Fom)msg, where m; : My x My — M;, i = 1,2, being the
natural projections ([18]). The local components g5 of the metric ¢ = g X g,
which may not vanish identically are the following: gab = Gupy Gas = Fgas, Where
a,b,c,dye, fe{l,--- ,p}, a, 8,7, 6 €{p+1,---,n} and r,s,t,u,v,w € {1,--- ,n}.
The local components I';, of the Levi-Civita connection V of M; xp My are

Iy, =T,.T9, =15, T = 13 Fgas, TS, = 55Fa0§ T2, =T, = 0. Now
the local components R,styy = grow (0,1 — 0, T, + T2, T, — T2, TY), O = 8.%’ of

the tensor R and the local components S;s of the tensor S of M7 X p My which may
not vanish identically are the following ([11]):

(4) Rapea = Rabed s

(5) Roabp = —% abJaf

(6) Rapys = FRogys— %éaﬁwé ’

(7) Sab = Sap— %Tab :

(8) Say = iﬁ—éGdﬂ+n_ﬁ51&F)%m

(9) Tw = VuF,— %  tr(T) =g%T, , AL F =gF,F),
(10) VyF, = 0O,F,-T%F,.

The scalar curvature s of the manifold M; X p Ms is given by

1 n—op

N n-p-1
(11) k=FR+ s i (tr(T) + ¥ A1F> ,

where § and K are the scalar curvature of (M;,7) and (Ma,g), respectively.

Example 2.1. We consider the warped product M; X g Ms of a 1-dimensional
manifold (M7,9), g3 = € = £1 and a 2-dimensional manifold (Ms,g) with the
warping function F'. The local components of the Riemannian curvature tensor
R and the Ricci tensor S of M; X My which may not vanish identically are the
following

1 - tr(T) _ tr(T)
« - *7T [e = - [e} = - « )
Riap1 5 111 Jap o J119as Ya Giap1
1 & /I F
Raprs = f(§ - W)Gaﬁwéa
tr(T
S = - 2(F)911,

tT(T) 1 & AlF
Sap = (_ 2F T ars T~ oF )>gaﬁ’
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where AlF = gll(Fl)z, tT(T) = %gllTll, T11 = V1F1 - ﬁ (F1)2, F1 = %, and
a,B,7,6 € {2,3}. From the above formulas we get

g - (_”‘(T) 1 (%_A1F)> _i(E_AlF

2F ' 2F 2F ‘2 2F

2 2F

JwRw,

where wy, = 5,11 are the local components of the 1-form w. Thus M; xgp M is a
quasi-Einstein manifold, and in a consequence of Theorem A, a pseudo-symmetric
manifold.

Example 2.2. Let on the set M; = {(2%,2%) € R? 2! € (0,%)} be given a
metric tensor g, defined by g;; = a?, G195 = Jo; = 0, Goy = a®cos?z!, where
a = const. > 0. It is easy to verify that the local components T,, a,b € {1,2}, of

the tensor T = V2F — # dF @ dF, where F is defined by F = F(z!,2%) = cos? 21,

are the following: T = —% cios2 2 gy, Tie =T =0, Toy = % sin® 1 g,
Furthermore, we also have a% = 5. The local components of the curvature tensor R
of My X p My, which may not vanish identically, are the following R,pcq = g Gabed,
R3aps = —% Tapg33. Using now the above relations we find
1 1 2 R
R = ——T = —(——)F7g = -G
3113 oF 11933 2F( ag) 911933 5 731135
1
R = ——T = 0,
3123 oF 12933
1 .9 1 1-FFR
R3203 = “5F To2g33 = _ﬁ(ﬁ) SINT T gorg33 = g G3223,
F_ 1 2 _ 2
Su = gin-oplu = 50 = Z9u,
F_ 1 1 _ 1
Soo = 5922 ~ ﬁT22 =3 (1 —tan®z!) Gy = ) (1 —tan® z') goo
tr(T) - 1
S33 = (2 )933 = 2 (1 —tan®z") gs3 .

From the above formulas we get

2 1
— (1 - tan?zha?)w @ w,

1
S = —(1—tan®2! =
( E%Ilﬂc)ng(a2 o

a2

where wj, = & are the local components of a 1-form w. Thus M; xp Ms is a
quasi-Einstein manifold, and in a consequence of Theorem A, a pseudo-symmetric
manifold.

3. 3-dimensional Thurston geometries

A model geometry (G, M) is a manifold M together with a Lie group G of
diffeomorphisms of M such that ([22]): M is connected and simply connected, G
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acts transitively on M, with compact point stabilizers, G is not contained in any
larger group of diffeomorphisms of M with compact stabilizers of points, and there
exists at least one compact manifold of type (modeled on) (G, M).

W. M. Thurston classified the 3-dimensional geometries which are R3, S3(c),

H3(—c), S? x R, H?(—c) x R, SU(2), SL(2,R), H3 and the Lie group Sol ([21],
[22]). The Lie group Sol is considered as R3 endowed with the left invariant metric
ds?> = e?*dx? + e~ ?*dy?® + dz?. Geometric properties of the eight 3-dimensional
Thurston geometries were studied, among others, in [6] and [17].

It is known that the Lie group Sol admit the following family of metrics

g = glp, pio, ps] = e 7da” + e 222 dy? + p3dz?

where p1, e and pg are real constants and pgs is positive. Recently, these metrics
have been studied by J. Inoguchi ([15]). The Riemannian curvature R and the Ricci
curvatures and the scalar curvature of such metrics are the following ([15]):

2 2
Ri212 = —L/f, Ryz13 = —/%, Roses = _,u%’
H3 H3 M3
pa(pn + po) fi2(p1 + pio) 1+ 3 2
PL=—" 5 s P2= """ 5 ,P3=— 1 D) Za/ﬁ::_iz(/i%+ug+ulﬂ2)a
H3 M3 M3 H3

respectively. We have,
Proposition 8. The Riemannian manifold M3 = (R3, g[u1, p2, p3]) is pseudo-
symmetric if and only if u1 =0 or uo =0 or uy = us.

Proof. Our assertion is an immediate consequence of Proposition B and the relation

(p1 = p2)(p1 — p3)(p2 — p3) = papa(pn + p3)(pr — p2)?,

which holds on M?3.

From the last proposition it follows that the hyperbolic 3-space M3 = H?(—c?)
(1 = p2 = ¢ # 0), the 4-symmetric space M? (u1 + po = 0 and || = 3), and
the warped products (N2, dz? + p3dz?) X, -2u,- R and (N2, dy? + p3dz?) X g42u,- R
( p1p2 = 0) are pseudo-symmetric manifolds. O
Thus we have,

Corollary 9. Fvery 3-dimensional Thurston’s geometry is pseudo-symmetric.
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