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Abstract. First, we give a complete classification of pseudo Ricci-Bourguignon soliton

on real hypersurfaces in the complex projective space CPn = SUn+1/S(U1 · Un). Next,

as an application, we give a complete classification of gradient pseudo Ricci-Bourguignon

soliton on real hypersurfaces in the complex projective space CPn.

1. Introduction

From 21th Century, many authors have investigated real hypersurfaces in Her-
mitian symmetric spaces with rank 1 or rank 2 of compact type. For the case of
rank 2, real hypersurfaces in the complex two-plane Grassmannians G2(Cn+2) or in
the complex quadric Qn were extensively studied by many authors (Lee-Suh [19],[20]
and [21], Pérez [26], Pérez-Suh [27], Pérez-Suh-Watanabe [28], Suh [32], [33], [34]
and [35], and Suh-Hwang-Woo [36]).

Motivated by the study of rank 2, in the class of Hermitian symmetric spaces
with rank 1 of compact type, we can give the example of the complex projective
space CPn = SUn+1/S(U1 · Un) (see Kobayashi-Nomizu [17]). It is geometrically
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different from the case of rank 2, which has a Kähler structure and a Fubini-Study
metric g of constant holomorphic sectional curvature 4 (see Cecil-Ryan [7], Djorić-
Okumura [12], Romero [29], [30], and Smyth [31]).

Recently, Yamabe solitons and Ricci solitons on almost co-Kähler manifolds and
three dimensional N(k)-contact manifolds have been investigated by Chaubey-De-
Suh [9] and [11]. Moreover, the study of the Yamabe flow was initiated in the work
of Hamilton [14], Morgan-Tian [22] and Perelman [25] as a geometric method to
construct Yamabe metrics on Riemannian manifolds.

Let g(t) be a Riemannian metric which is time dependent on a Riemannian
manifold M . It is said to be evolved by the Yamabe flow if the metric g satisfies

∂

∂t
g(t) = −γg(t), g(0) = g0

on M , where γ denotes the scalar curvature on M . From such a view point, in this
paper we want to give a complete classification of Yamabe solitons and gradient
Yamabe solitons on Hopf real hypersurfaces in the complex projective space CPn.

On the other hand, it is well known that there exist two focal submanifolds
of real hypersurfaces in Hermitian symmetric spaces of compact type and only one
focal submanifold in Hermitian symmetric spaces of non-compact type (see Cecil and
Ryan [7] and Helgason [13]). Since the complex projective space CPn is a Hermitian
symmetric space of compact type, any real hypersurface has two focal submanifolds
(see Djorić-Okumura [12], Pérez [26]). Among them we consider two kinds of real
hypersurfaces in CPn with isometric Reeb flow or contact hypersurfaces. In CPn,
Cecil-Ryan [7], and Okumura [23] gave a classification of real hypersurfaces with
isometric Reeb flow as follows:

Theorem A. Let M be a real hypersurface in the complex projective space CPn,
n ≥ 3. Then the Reeb flow on M is isometric if and only if M is an open part
of a tube of radius 0 < r < π

2 around a totally geodesic CP k ⊂ CPn for some
k ∈ {0, · · · , n− 1} or a tube of radius π

2 − r over CP ℓ, where k + ℓ = n− 1.

When a real hypersurface M in the complex projective space CPn satisfies
the formula Aϕ + ϕA = kϕ, k ̸= 0 and constant, we say that M is a contact
real hypersurface in CPn. In the papers due to Blair [2] and Yano-Kon [39], they
introduce the classification of contact real hypersurfaces in CPn as follows:

Theorem B. Let M be a connected orientable real hypersurface in the complex
projective space CPn, n ≥ 3. Then M is a contact real hypersurface if and only
if M is congruent to an open part of a tube of radius 0 < r < π

4 around an n-
dimensional real projective space RPn or a tube of radius π

4 − r over Qn−1, where
0 < r < π

4 .

Motivated by these results, in this paper we give some characterizations of
real hypersurfaces in the complex projective space CPn regarding a family of
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geometric flows. Indeed, we know that a solution of the Ricci flow equation
∂
∂tg(t) = −2Ric(g(t)) is given by

1

2
(LV g)(X,Y ) + Ric(X,Y ) = Ωg(X,Y ),

where Ω is a constant and LV denotes the Lie derivative along the direction of
the vector field V (see Chaubey-Suh-De [10], Jeong-Suh [15], Morgan-Tian [22],
Perelman [25], Wang [37] and [38]). Then this solution (M,V,Ω, g) is said to be a
Ricci soliton with potential vector field V and Ricci soliton constant Ω.

As a generalization of the Ricci flow, the Ricci-Bourguignon flow (see Bour-
guignon [3] and [4], Catino-Cremaschi-Djadli-Mantegazza-Mazzieri [6]) is given by

∂

∂t
g(t) = −2(Ric(g(t))− θγg(t)), g(0) = g0.

This family of geometric flows with θ = 0 reduces to the Ricci flow ∂
∂tg(t) =

−2Ric(g(t)), g(0) = g0. If the constant θ = 1
2 , it is said to be Einstein flow.

Its critical point of the Einstein flow

∂

∂t
g(t) = −2

(
Ric(g(t))− 1

2
γg(t)

)
, g(0) = g0,

implies that the Einstein gravitational tensor Ric(g(t)) − 1
2γg(t) vanishes. For a

four-dimensional space time M4, this is equivalent to the vanishing Ricci tensor by
virtue of dγ = 2div(Ric). In this case, M4 becomes vacuum. That is, g(t) = g(0),
the metric is constant along the time (see O’Neill [24]). For θ = 1

n , the tensor
Ric− γ

ng is said to be traceless Ricci tensor, and for θ = 1
2(n−1) , it is said to be the

Schouten tensor.

Now let us introduce a Ricci-Bourguignon soliton (M,V,Ω, θ, γ, g) which is a
solution of the Ricci-Bourguignon flow as follows:

1

2
(LV g)(X,Y ) + Ric(X,Y ) = (Ω + θγ)g(X,Y ),

for any tangent vector fields X and Y on M , where Ω is a soliton constant, θ any
constant and γ the scalar curvature on M , and LV denotes the Lie derivative along
the direction of the vector field V (see Bourguignon [3], [4], and Morgan-Tian [22]).
Then (M, g) is said to be a Ricci-Bourguignon soliton with potential vector field V
and Ricci-Bourguignon soliton constant Ω.

If the Ricci operator Ric of a real hypersurface M in CPn satisfies

(1.1) Ric(X) = aX + bη(X)ξ

for smooth functions a, b on M , then M is said to be pseudo-Einstein. Then we
introduce a complete classification of pseudo-Einstein Hopf real hypersurfaces in
the complex projective space CPn due to Cecil-Ryan [7] as follows:
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Theorem C. Let M be a pseudo-Einstein real hypersurface in the complex projec-
tive space CPn, n ≥ 3. Then M is locally congruent to one of the following:

(i) a geodesic hypersphere,

(ii) a tube of radius r around a totally geodesic CP k, 0 < k < n − 1, where
0 < r < π

2 and cot2r = k
n−k−1 ,

(iii) a tube of radius r around a complex quadric Qn−1 where 0 < r < π
4 and

cot22r = n− 2.

Let M be a Hopf hypersurface in the complex projective space CPn. Then we
have

Aξ = αξ

for the shape operator A with the Reeb function α = g(Aξ, ξ) on M in G2(Cn+2).
When we consider a tensor field J for any vector field X on M , which is a Kähler
structure on the tangent space TzM , z∈M , then JX is given by

JX = ϕX + η(X)N,

where ϕX = (JX)T is the tangential component of the vector field JX, η(X) =
g(ξ,X), ξ = −JN , and N denotes a unit normal vector field on M .

In this paper we introduce a new notion named generalized pseudo-anti commut-
ing property for the Ricci tensor of a real hypersurface M in the complex projective
space CPn as follows:

(1.2) Ricϕ+ ϕRic = fϕ

for a smooth function f on M in CPn (see Ki-Suh [16], and Yano-Kon [39]).

It is known that Einstein and pseudo-Einstein real hypersurfaces M in the
complex projective space CPn satisfy the condition of generalized pseudo-anti com-
muting Ricci tensor, that is, Ricϕ+ϕRic = fϕ, where f denotes a smooth function
on M in CPn (see Besse [1], Cecil-Ryan [7] and Kon [18]). In Yano-Kon [39], real
hypersurfaces of type (B) in the complex projective space CPn, which are charac-
terized by Aϕ+ϕA = kϕ, k ̸= 0, also satisfy the formula of generalized pseudo-anti
commuting Ricci tensor in (1.2).

Let us define a pseudo Ricci-Bourguignon soliton (M,V, η,Ω, θ, γ, g) as follows:

(1.3)
1

2
(LV g)(X,Y ) + Ric(X,Y ) + ψη(X)η(Y ) = (Ω + θγ)g(X,Y )

for any tangent vector fields X and Y on M , where Ω is said to be a pseudo Ricci-
Bourguignon soliton constant, the functions θ and ψ are any constants and γ the
scalar curvature onM , and LV denotes the Lie derivative along the direction of the
vector field V .
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When the function ψ identically vanishes, the pseudo Ricci-Bourguignon soli-
ton (M,V, η,Ω, θ, γ, g) is said to be a Ricci-Bourguignon soliton (M,V,Ω, θ, γ, g).
We also say that the pseudo Ricci-Bourguignon soliton is shrinking, steady, and
expanding according to the pseudo Ricci-Bourguignon soliton constant function
Ω > 0, Ω = 0, and Ω < 0 respectively.

Now in this paper, by using the notion of generalized pseudo-anti commuting
Ricci tensor (1.2), we give a theorem as follows:

Theorem 1. Let M be a Hopf pseudo Ricci-Bourguignon soliton (M, ξ, η,Ω, θ, γ, g)
in the complex projective space CPn, n≥3. Then M is pseudo-Einstein and locally
congruent to one of the following:

(i) a geodesic hypersphere, Ω+ θγ = 2{(n− 1)cot2(r) + n}, and ψ = 2n,

(ii) a tube of radius r around a totally geodesic CP k, 0 < k < n − 1, where
0 < r < π

2 , cot
2r = k

n−k−1 , Ω+ θγ = 2n, and ψ = 2.

Let us denote by Df the gradient vector field of the function f on a real
hypersurface M in the complex projective space CPn defined by g(Df,X) =
g(gradf,X) = X(f) for any tangent vector field X on M . Now let us consider
the gradient pseudo Ricci-Bourguignon soliton (M,Df, η,Ω, θ, γ, g). It is a gener-
alization of gradient Einstein soliton derived from a generalized Ricci potential for
a Riemannian manifold (M, g) (see Catino-Mazzieri [5], Cernea-Guan [8]). It is
defined by

Hess(f) + Ric + ψη⊗η = (Ω + θγ)g,

where Hess(f) is defined by Hess(f) = ∇Df and for any tangent vector fields X
and Y on M

Hess(f)(X,Y ) = XY (f)− (∇XY )f.

Then a gradient pseudo Ricci-Bourguignon soliton in CPn can be defined by

∇XDf +Ric(X) + ψη(X)ξ = (Ω + θγ)X

for any vector field X tangent to M in CPn. Then first by Theorem C and Theo-
rem 1 we can assert a classification theorem of gradient pseudo Ricci-Bourguignon
solitons in CPn as follows:

Theorem 2. LetM be a real hypersurface in CPn with isometric Reeb flow, n≥3. If
it admits the gradient pseudo Ricci-Bourguignon soliton (M,Df, η,Ω, θ, γ, g), then
M is pseudo-Einstein and locally congruent to one of the following

(i) a geodesic hypersphere, Ω+ θγ = 2{(n− 1)cot2(r) + n}, and ψ = 2n,

(ii) a tube of radius r around a totally geodesic CP k, 0 < k < n − 1, where
0 < r < π

2 , cot
2r = k

n−k−1 , Ω+ θγ = 2n, and ψ = 2.
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Next by virtue of Theorem B let us consider a contact real hypersurface in
the complex projective space CPn. Then we can assert a classification of gradient
pseudo Ricci-Bourguignon soliton in CPn as follows:

Theorem 3. Let M be a contact real hypersurface in the complex projective
space CPn, n≥3. If it admits the gradient pseudo Ricci-Bourguignon soliton
(M,Df, η,Ω, θ, γ, g), then M is pseudo-Einstein and locally congruent to a tube
of radius r around a complex quadric Qn−1 where 0 < r < π

4 and cot2(2r) = n− 2.
Moreover, the soliton constants are given by Ω+ θγ = 2n and ψ = 2(2n− 1).

2. The Complex Projective Space

Let (M̄, g, J) be a Kähler manifold and R̄ the Riemannian curvature tensor of
(M̄, g). Since ∇̄J = 0, we immediately see that

R̄(X,Y )JZ = JR̄(X,Y )Z

holds for all X,Y, Z ∈ Tp(M̄), p ∈ M̄ . From the curvature identities in Kobayashi
and Nomizu [17] we also get

g(R̄(X,Y )Z,W ) = g(R̄(JX, JY )Z,W ) = g(R̄(X,Y )JZ, JW ).

Let GJ
2 (TM̄) be the Grassmann bundle over M̄ consisting of all 2-dimensional

J-invariant linear subspaces V of TpM̄ , p ∈ M . Thus every V ∈ GJ
2 (TM̄) is a

complex line in the corresponding tangent space of M̄ . The restriction of the section
curvature function K to GJ

2 (TM̄) is called the holomorphic sectional curvature
function on M̄ and K(V ) is called the holomorphic sectional curvature of M̄ with
respect to V ∈ GJ

2 (TM̄).

A Kähler manifoldM is said to have constant holomorphic sectional curvature if
the holomorphic sectional curvature function is constant. Now we want to introduce
the following.

Theorem 2.1. A Kähler manifold (M̄, g, J) has constant holomorphic sectional
curvature c ∈ R if and only if its Riemannian curvature tensor R̄ is of the form

R̄(X,Y )Z =
c

4

{
g(Y,Z)X − g(X,Z)Y

+ g(JY, Z)JX − g(JX,Z)JY − 2g(JX, Y )JZ
}

for any vector fields X,Y and Z on M̄ .

The complex vector space Cn (n ∈ N) is in a canonical way an n-dimensional
complex manifold. For p ∈ Cn denote by πp : TpCn → Cn the canonical isomor-
phism. We define a Riemannian metric g on Cn by

gp(u, v) = ⟨πp(u), πp(v)⟩
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for all u, v ∈ TpCn and p ∈ Cn, where < ·, · > is the real part of the standard
Hermitian inner product on Cn, that is,

< a, b >= Re

(
n∑

ν=1

aν b̄ν

)
(a, b ∈ Cn).

The metric g is called the canonical Riemannian metric on Cn. The complex
structure J on Cn is given by the equation πp(Ju) = iπp(u). It is easy to verify
that (Cn, g, J) is a Kähler manifold. In fact, (Cn, g, J) a complex Euclidean space
with vanishing constant holomorphic sectional curvature. The Kähler manifold
(Cn, g, J) is known to be the n-dimensional complex Euclidean space.

We define an equivalence relation ∼ on Cn+1\{0} by z1 ∼ z2 if and only if there
exists λ ∈ C \ {0} so that z2 = z1λ. We denote the quotient space Cn+1 \ {0})/ ∼
by CPn. By construction, the points in CPn are in one-to-one correspondence with
the complex lines through 0 ∈ Cn+1. We equip CPn with the quotient topology
with respect to the canonical projection τ : Cn+1 \ {0} → CPn. Then CPn is a
compact Hausdorff space and τ is a continuous map. There exists a unique complex
manifold structure on CPn so that τ is a holomorphic submersion. In this way CPn

becomes an n-dimensional complex manifold (CPn, J). For z ∈ Cn+1 \ {0} we also
write [z] = τ(z) ∈ CPn (see Kobayashi and Nomizu [17]).

Let S2n+1 be the unit sphere in Cn+1 and denote by π the restriction of τ to
S2n+1. We consider S2n+1 with the Riemannian metric induced from Cn+1, which
is the standard metric on S2n+1 turning it into a real space form with constant
sectional curvature 1. The map π : S2n+1 → CPn is a surjective submersion
whose fibers are 1-dimensional circles. There exists a unique Riemannian metric
g on CPn so that π becomes a Riemannian submersion. In such a way, the map
π : S2n+1 → CPn is known as the Hopf map from S2n+1 onto CPn and the
Riemannian metric g is known as the Fubini-Study metric on CPn. The manifold
(CPn, J, g) is a Kähler manifold and called the n-dimensional complex projective
space. The complex projective space (CPn, J, g) is a complex space form with
constant holomorphic sectional curvature 4.

By virtue of Theorem 2.1, the Riemannian curvature tensor R̄ of CPn can be
given for any vector fields X, Y and Z in Tp(CPn), p ∈ CPn as follows:

R̄(X,Y )Z = g(Y,Z)X − g(X,Z)Y + g(JY, Z)JX

− g(JX,Z)JY − 2g(JX, Y )JZ.

(2.1)

3. Some General Equations

Let M be a real hypersurface in the complex projective space CPn and denote
by (ϕ, ξ, η, g) the induced almost contact metric structure. Note that ξ = −JN ,
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where N is a (local) unit normal vector field of M . Then the vector field ξ is
said to be the Reeb vector field on M in CPn. The tangent bundle TM of M
splits orthogonally into TM = C ⊕ Rξ, where C = ker(η) is the maximal complex
subbundle of TM . The structure tensor field ϕ restricted to C coincides with the
complex structure J restricted to C, and ϕξ = 0.

In different way, the complex projective space CPn is defined by using the
fibration

π̃ : S2n+1(1)→CPn, p→[p],

which is said to be a Riemannian submersion. Then naturally we can consider the
following diagram for a real hypersurface in the complex projective space CPn as
follows:

M ′ = π̃−1(M)
ĩ−−−−→ S2n+1(1)⊂Cn+1

π

y π̃

y
M

i−−−−→ CPn

We now assume that M is a Hopf hypersurface. Then we have

Aξ = αξ,

where A denotes the shape operator of M in CPn and the smooth function α is
defined by α = g(Aξ, ξ) on M . When we consider the transformed vector field JX
by the Kähler structure J on CPn for any vector field X on M in CPn, we may
write

JX = ϕX + η(X)N.

Then by using Kähler structure ∇̄J = 0, we get the following

(∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ and ∇Xξ = ϕAX,

where ∇̄ and ∇ denote the Levi-Civita connections of M̄ and M respectively.

Now we consider the equation of Codazzi

g((∇XA)Y − (∇YA)X,Z) = η(X)g(ϕY,Z)− η(Y )g(ϕX,Z)− 2η(Z)g(ϕX, Y ).

By the equation of Gauss, the curvature tensor R(X,Y )Z for a real hypersurfaceM
in CPn induced from the curvature tensor R̄ in (2.1) of CPn can be described in
terms of the almost contact structure tensor ϕ and the shape operator A of M in
CPn as follows:

R(X,Y )Z = g(Y, Z)X − g(X,Z)Y

+ g(ϕY,Z)ϕX − g(ϕX,Z)ϕY − 2g(ϕX, Y )ϕZ

+ g(AY,Z)AX − g(AX,Z)AY

(3.1)
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for any vector fields X,Y, Z ∈ TzM , z ∈M . From this, contracting Y and Z on M
in CPn, we get the Ricci operator of a real hypersurface M in CPn as follows:

(3.2) Ric(X) = (2n+ 1)X − 3η(X)ξ + (TrA)AX −A2X.

Then by contracting the Ricci operator in (3.2) the scalar curvature γ of M in CPn

is given by

(3.3) γ =
∑2n−1

i=1
g(Ric(ei), ei) = 4(n2 − 1) + h2 − TrA2,

where the function h denotes the trace of the shape operator A of M in CPn.

Putting Z = ξ in the Codazzi equation, we get

(3.4) g((∇XA)Y − (∇YA)X, ξ) = −2g(ϕX, Y ).

Since we have assumed that M is Hopf in CPn, differentiating Aξ = αξ gives

(∇XA)ξ = (Xα)ξ + αϕAX −AϕAX.

From this, the left side of (3.4) becomes

g((∇XA)Y − (∇YA)X, ξ)

= g((∇XA)ξ, Y )− g((∇YA)ξ,X)

= (Xα)η(Y )− (Y α)η(X) + αg((Aϕ+ ϕA)X,Y )− 2g(AϕAX, Y ).

(3.5)

Putting X = ξ in (3.4) and (3.5) and using the almost contact structure of (M, g),
we have

Y α = (ξα)η(Y ).

Inserting this formula into (3.4) and (3.5) implies the following for any vector fields
X and Y on M

0 = 2g(AϕAX, Y )− αg((ϕA+Aϕ)X,Y )− 2g(ϕX, Y ).

By virtue of this equation, we can assert the following

Lemma 3.1. Let M be a Hopf real hypersurface in CPn, n ≥ 3. Then we have

2AϕAX = α(Aϕ+ ϕA)X + 2ϕX

for any tangent vector field X on M .

By using the formulas given in section 3 we want to introduce an important
lemma due to Okumura [23] and Yano-Kon [39] as follows:

Lemma 3.2. Let M be a Hopf real hypersurface in CPn. Then the Reeb function α
is constant. Moreover, if X ∈ C is a principal curvature vector of M with principal
curvature λ, then 2λ ̸= α and ϕX is a principal curvature vector ofM with principal
curvature αλ+2

2λ−α . on M , where C denotes the orthogonal complement of the Reeb
vector field ξ on M .
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Now by using (3.2) and (3.3), we introduce an important proposition due to
Cecil-Ryan [7], Djorić-Okumura [12] as follows:

Proposition 3.3. LetM be the tube of radius 0 < r < π
2 around the totally geodesic

CP k, k ∈ {1, · · · , n−2} in CPn, which is said to be of type (A2). Then the following
statements hold:

(1) M is a Hopf hypersurface.

(2) The principal curvatures and corresponding principal curvature spaces of M are
given by

principal curvature eigenspace multiplicity
λ = cot(r) Tλ 2ℓ
µ = −tan(r) Tµ 2k
α = 2 cot(2r) Tα = RJN 1

where ℓ = n− k − 1.

(3) The shape operator A commutes with the structure tensor field ϕ as

Aϕ = ϕA.

(4) The trace h of the shape operator A and its square h2 becomes the following
respectively

h = (2ℓ+ 1)cot(r)− (2k + 1)tan(r),

h2 = (2ℓ+ 1)2cot2(r) + (2k + 1)2tan2(r)− 2(2ℓ+ 1)(2k + 1).

(5) The trace of the matrix A2 is given by

TrA2 = (2ℓ+ 1)cot2(r) + (2k + 1)tan2(r)− 2.

(6) The scalar curvature γ of the tube M is given by

γ = 4(n− 1)n− 8kℓ+ 2(2ℓ+ 1)ℓcot2(r) + 2(2k + 1)ktan2(r).

Remark 3.4. For k = 0, M is pseudo Einstein, that is, a geodesic hypersphere,
which is said to be of type (A1) such that

Ric(X) = 2{(n− 1)cot2(r) + n}X − 2nη(X)ξ.

Now letM be a tube of radius r, 0 < r < π
4 , over the real projective space RP

n,
which is said to be of type (B) and a contact real hypersurface in the complex
projective space CPn. It also can be regarded as a tube of radius π

4 − r over the
complex quadric Qn−1.

The tube of radius r around totally geodesic and totally real projective
space RPn has therefore three distinct constant principal curvatures 2tan(2r),
−cot(r), and tan(r). It also can be regarded as a tube of radius π

4 − r over a
totally geodesic complex quadric Qn−1. Then by (3.2) and (3.3), we want to give
an important proposition due to Cecil-Ryan [7] as follows:
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Proposition 3.5. Let M be the tube of radius 0 < r < π
4 around the complex

quadric Qn−1 in CPn. Then the following statements hold:

(1) M is a Hopf hypersurface.

(2) The principal curvatures and corresponding principal curvature spaces of M are

principal curvature eigenspace multiplicity
λ = −cot(π4 − r) Tλ n− 1
µ = tan(π4 − r) Tµ n− 1
α = 2 cot(2r) RJN 1

(3) The shape operator A and the structure tensor field ϕ satisfy

Aϕ+ ϕA = kϕ, k ̸= 0 : const.

(4) The trace h of the shape operator A and its square h2 becomes the following
respectively

h = TrA = 2cot(2r)− 2(n− 1)tan(2r),

h2 = 4cot2(2r) + 4(n− 1)2tan2(2r)− 8(n− 1).

(5) The trace of the matrix A2 is given by

TrA2 = 4cot2(2r) + 4(n− 1)tan2(2r).

(6) The scalar curvature γ of the tube M is given by

γ = 4(n− 1)2 + 4(n− 1)(n− 2)tan2(2r).

(7) For cot2(r) = n− 2, M is pseudo-Einstein such that

Ric(X) = 2nX− 2(2n− 1)η(X)ξ.

4. Hopf Pseudo Ricci-Bourguignon Soliton Real Hypersurfaces

Let us introduce a pseudo Ricci-Bourguignon soliton (M, ξ, η,Ω, θ, γ, g) which
is a solution of the pseudo Ricci-Bourguignon flow defined by

∂

∂t
g(t) = −2(Ric(g(t))− θγg(t))− 2ψη(g(t))⊗η(g(t)), g(0) = g0.

Then it is given by the following

(4.1)
1

2
(Lξg)(X,Y ) + Ric(X,Y ) + ψη(X)η(Y ) = (Ω + θγ)g(X,Y )
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for any tangent vector fields X and Y onM , where Ω is a pseudo Ricci-Bourguignon
soliton constant, ψ and θ any constants and γ the scalar curvature on M , and LV

denotes the Lie derivative along the direction of the vector field V (see Morgan-
Tian [22]). Then by virtue of the Lie derivative, we have

(Lξg)(X,Y ) = ξ(g(X,Y ))− g(LξX,Y )− g(X,LξY )

= g(∇ξX,Y ) + g(X,∇ξY )− g([ξ,X], Y )− g(X, [ξ, Y ])

= g(∇Xξ, Y ) + g(X,∇Y ξ)

= g((ϕA−Aϕ)X,Y ).

Then the formula (4.1) can be given by

(4.2) Ric(X) =
1

2
(Aϕ− ϕA)X − ψη(X)ξ + (Ω + θγ)X.

From this, by applying the structure tensor ϕ to both sides, we get the following
two formulas

Ric(ϕX) =
1

2
(Aϕ2 − ϕAϕ)X − ψη(ϕX)ξ + (Ω + θγ)ϕX,

and

ϕRic(X) =
1

2
(ϕAϕ− ϕ2A)X − ψη(X)ϕξ + (Ω + θγ)ϕX.

By using the almost contact structure (ϕ, ξ, η, g) in the right side above, we
know that the generalized pseudo anti-commuting property holds as follows:

(4.3) Ric(ϕX) + ϕRic(X) = 2(Ω + θγ)ϕX.

Now we want to introduce an important proposition due to Ki-Suh [16], and
Yano-Kon [39], which will be used in the proof of our Theorem 1 as follows:

Proposition 4.1 Let M be a connected complete Hopf real hypersurface in the
complex projective space CPn. If M satisfies the generalized pseudo-anti commut-
ing property, then M is locally congruent to a geodesic hypersphere in the class of
type (A1), a pseudo-Einstein hypersurface in the class of type (A2), or M is locally
congruent to of type (B).

Among real hypersurfaces of type (A2) satisfying the generalized pseudo-anti
commuting property (4.2) is only pseudo-Einstein. Then it is exactly the second
case in Theorem C. That is M is locally congruent to a tube of radius r around a
totally geodesic CP k, 0 < k < n− 1, where 0 < r < π

2 and cot2(r) = k
n−k−1 .

Now geodesic hyperspheres and pseudo-Einstein real hypersurfaces are included
in the class of type (A1) and A2 respectively. So by Theorem A, they are character-
ized by the commuting shape operator. That is, Aϕ = ϕA. Accordingly, from the
notion of pseudo Ricci-Bourguignon soliton (M, ξ, η,Ω, θ, γ, g) of M , (4.1) becomes

Ric(X) = (Ω + θγ)X − ψη(X)ξ.
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This means that those hypersurfaces are pseudo-Einstein. Then by virtue of The-
orem C there exist three kind of pseudo-Einstein real hypersurfaces in complex
projective space CPn such that

(i) a geodesic hypersphere,

(ii) a tube of radius r around a totally geodesic CP k, 0 < k < n − 1, where
0 < r < π

2 and cot2r = k
n−k−1 ,

(iii) a tube of radius r around a complex quadric Qn−1 where 0 < r < π
4 and

cot22r = n− 2.

For the case (i) it can be easily verified that a geodesic hypersphere in Remark 3.4
satisfies the following

Ric(X) = 2{(n− 1)cot2(r)X + n}X − 2nη(X)ξ

for any vector fields X on M in CPn. Then Ω + θγ = 2n + 2(n − 1)cot2(r),
and ψ = 2n.

Now let us check the second case (ii) whether it satisfies a pseudo Ricci-
Bourguignon soliton for cot2r = k

n−k−1 . Then for the Reeb vector field ξ we have
the following

Ric(ξ) = (a+ b)ξ

=
[
2(n− 1) + {(2ℓ+ 1)cot(r)− (2k + 1)tan(r)}(cot(r)− tan(r))

− (cot(r)− tan(r))2
]
ξ

=
{
2(n− 1) + 2ℓcot2(r)− 2ℓ− 2k + 2ktan2(r)

}
ξ,

where ℓ = n− k − 1 and cot2(r) = k
n−k−1 . Then the coefficient a+ b is given by

a+ b = g(Ric(ξ), ξ) = 2n− 2.

Moreover, by using cot2(r) = k
n−k−1 and Proposition 3.3, for any vector fields

X∈Tλ, λ = cot(r) and Y ∈Tµ, µ = tan(r), we have the following formulas, respec-
tively

Ric(X) = aX = {(2n+ 1) + hλ− λ2}X
= {(2n+ 1) + 2ℓcot2(r)− (2k + 1)}X
= 2nX

and

Ric(Y ) = aY = {(2n+ 1)− (2ℓ+ 1) + 2ktan2(r)}Y
= 2nY.
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Then the Ricci operator of pseudo-Einstein hypersurfaces satisfying the pseudo
Ricci-Bourguignon soliton becomes

Ric(X) = aX + bη(X)ξ = (Ω + θγ)X − ψη(X)ξ,

where soliton constants are given by Ω+θγ = a = 2n and ψ = −b = 2, respectively.

Finally, in the third case (iii) let us check that a tube of radius r around the
complex quadric Qn−1 with cot2(2r) = n− 2 in the complex projective space CPn

could satisfy the pseudo Ricci-Bourguignon soliton.

In order to do this, first we should check that this tube is pseudo-Einstein for
cot2(2r) = n−2. In fact, it is characterized by Aϕ+ϕA = kϕ, where k ̸=0 : constant.
Moreover, by Proposition 3.5, the principal curvature are given by λ = −cot(π4 −r),
µ = tan(π4 − r) and α = 2cot(2r). So k = λ + µ = − 4

α . For any X∈Tλ the vector
field ϕX∈Tµ. Then by (3.2) we know the following for any X∈Tλ

Ric(X) = {(2n+ 1) + hλ− λ2}X

and for any Y ∈Tµ
Ric(Y ) = {(2n+ 1) + hµ− µ2}Y.

Then from cot2(2r) = n− 2 we can verify the following

(hλ− λ2)− (hµ− µ2) = (λ− µ)(h− (λ+ µ))

= (λ− µ)(h+
4

α
)

= 0,

where by Proposition 3.5, we have used the following from cot2(2r) = n− 2

h+
4

α
= 2cot(2r)− 2(n− 1)tan(2r) + 2tan(2r)

= 2cot(2r)− 2(n− 2)tan(2r)

= 2
{cot2(2r)− (n− 2)

cot(2r)

}
= 0.

(4.4)

Moreover, Ric(ξ) = {2(n − 1) + (hα − α2)}ξ. So for a pseudo-Einstein real hyper-
surface in CPn we may put

Ric(X) = aX + bη(X)ξ,

where by Proposition 3.5 and cot2(2r) = n− 2, the constant a+ b is given by

a+ b = 2(n− 1) + hα− α2

= 2(n− 1) + {2cot(2r)− 2(n− 1)tan(2r)}2cot(2r)− (2cot(2r))2

= −2(n− 1)
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and by the property of contact hypersurfaces, we know that λ + µ = − 4
α . So by

virtue of (4.4), it follows that h = λ+ µ. Then the constant a is given by

a = (2n+ 1) + hλ− λ2 = (2n+ 1) + λµ = 2n.

By the above two constants a and a+ b, another constant b becomes

b = −2(2n− 1).

Then if the third case satisfies the pseudo Ricci-Bourguignon soliton, we can assert
the following

Ric(X) = 2nX − 2(2n− 1)η(X)ξ

=
1

2
(Aϕ− ϕA)X + (Ω + θγ)X − ψη(X)ξ

(4.5)

where the soliton constants Ω,θ and ψ are given by Ω+ θγ = 2n and ψ = 2(2n−1).
Then for X∈Tλ and ϕX∈Tµ the formula (4.5) is given by

Ric(X) = 2nX =
1

2
(µ− λ)ϕX + 2nX.

This means that λ = µ. That is, −cot(π4 − r) = tan(π4 − r), which gives a
contradiction. So there does not exist a real hypersurface of type (B) which satisfy
the pseudo Ricci-Bourguignon soliton.

Then summing up the above discussion for (iii), together with the cases (i)
and (ii), we can assert our Main Theorem 1 in the introduction.

5. Gradient Pseudo Ricci-Bourguignon Soliton on Isometric Reeb Flow
in CPn

In this section let M be a tube of radius r, 0 < r < π
2 , over a totally

geodesic CP k, k ∈ {0, 1, · · · , n− 2, n− 1} in CPn, which is said to be of type (A1)
or of type (A2). In Theorem A, we have mentioned that the Reeb flow on M in
CPn is isometric if and only if M is locally congruent to a totally geodesic CP k in
CPn for k ∈ {0, 1, · · · , n − 1}. Then for k = 0 or k = n − 1 we say that M is a
geodesic hypersphere which is said to be of type (A1) and it has with two distinct
principal curvatures. For k ∈ {1, · · · , n− 2}, M is locally congruent to a tube over
CP k in CPn. Moreover, it is said to be of type (A2) and has with three distinct
constant principal curvatures.

Then the shape operator of M in the complex projective space CPn with iso-
metric Reeb flow can be expressed as

A = diag
(
α, cot(r), · · · , cot(r)︸ ︷︷ ︸

2ℓ

,−tan(r), · · · ,−tan(r)︸ ︷︷ ︸
2k

)
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for three constant principal curvatures α = 2cot(2r), cot(r) and −tan(r) with mul-
tiplicities 1, 2ℓ and 2k respectively, where ℓ = n− k − 1.

Then, by putting X = ξ in (3.2), and using Aξ = αξ, we have the following

Ric(ξ) = (2n+ 1)ξ − 3ξ + hAξ −A2ξ

= 2(n− 1)ξ + (hα− α2)ξ

= κξ,

where we have put κ = 2(n− 1) + hα − α2. So by Proposition 3.3, the constant κ
is given by

κ = 2(n− 1) + (hα− α2)

= 2(n− 1) + {(2ℓ+ 1)cot(r)− (2k + 1)tan(r)}2cot(2r)− (2cot(2r))2

= 2(n− 1) + 2{ℓcot2(r) + ktan2(r)− (k + ℓ)}
= 2ℓcot2(r) + 2ktan2(r).

Then by taking the covariant derivative we get the following two formulas

(∇XRic)ξ = κϕAX − Ric(ϕAX),

and
(∇ξRic)X = h(∇ξA)X − (∇ξA

2)X.

SinceM admits the gradient pseudo Ricci-Bourguignon soliton (M,Df, η,Ω, θ, γ, g),
we could consider the soliton vector field W as W = Df for any smooth function
onM . In the introduction we have noted that Hess(f) is defined by Hess(f) = ∇Df
for any tangent vector fields X and Y on M in such a way that

Hess(f)(X,Y ) = g(∇XDf, Y ).

Then the gradient pseudo Ricci-Bourguignon soliton (M,Df, η,Ω, θ, γ, g) can be
given by

(5.1) ∇XDf +Ric(X) + ψη(X)ξ = (Ω + θγ)X

for any tangent vector field X on M . Then by covariant differentiation, it gives

∇X∇YDf + (∇XRic)(Y ) + Ric(∇XY )

+ ψ(∇Xη)(Y )ξ + ψη(∇XY )ξ + ψη(Y )ϕAX

=(Ω + θγ)∇XY

for any vector field X and Y tangent to M in CPn. From this, together with
the above two formulas for the derivative of Ricci operator and the constant scalar
curvature γ for the isomeric Reeb flow, it follows that

R(ξ, Y )Df = ∇ξ∇YDf −∇Y ∇ξDf −∇[ξ,Y ]Df

= (∇Y Ric)ξ − (∇ξRic)Y + ψϕAY

= (κ+ ψ)ϕAY − Ric(ϕAY )− h(∇ξA)Y + (∇ξA
2)Y.

(5.2)
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Then from (3.1) we have the following for a real hypersurface M in CPn with
isometric Reeb flow

R(ξ, Y )Df =g(Y,Df)ξ − g(ξ,Df)Y

+ g(AY,Df)Aξ − g(Aξ,Df)AY.

(5.3)

From this, let us take a vector field Y ∈ Tλ, λ = cot(r). Moreover, we can decompose
the tangent space TCPn as

TCPn = Tλ ⊕ Tµ ⊕ Tα ⊕ RN,

where λ = cot(r), µ = −tan(r) and α = 2cot(2r). If M is of type (A1), that is, a
geodesic hypersphere in CPn, it can be decomposed as

TCPn = Tλ ⊕ Tα ⊕ RN,

or otherwise
TCPn = Tµ ⊕ Tα ⊕ RN.

Then for Y ∈ Tλ (5.3) gives

R(ξ, Y )Df = g(Y,Df)ξ − g(ξ,Df)Y + αλg(Y,Df)ξ − αλg(ξ,Df)Y

= (1 + αλ){g(Y,Df)ξ − g(ξ,Df)Y }.
(5.4)

Then by taking the inner product of (5.4) with the Reeb vector field ξ and using
(5.2), it follows that (1 + αλ)g(Y,Df) = cot2(r)g(Y,Df) = 0. But cot2(r) ̸=0 for
the radius 0 < r < π

2 of isometric Reeb flow M in CPn. It means the following for
any Y ∈ Tλ

(5.5) g(Y,Df) = 0.

From this, together with Proposition 3.3 and (5.1), we get the result (i) in our
Theorem 2 in the introduction.

Now let us check (5.3) for Y ∈ Tµ, µ = −tan(r). Then (5.3) gives

(5.6) R(ξ, Y )Df = g(Y,Df)ξ − g(ξ,Df)Y + αµg(Y,Df)ξ − αµg(ξ,Df)Y.

Then by taking the inner product (5.6) with the Reeb vector field ξ and Y ∈ Tµ
respectively and using (5.2), we get

(5.7) (1 + αµ)g(Y,Df) = 0 and (1 + αµ)g(ξ,Df) = 0,

where g(R(ξ, Y )Df, ξ) = 0 and the left side g(R(ξ, Y )Df, Y ) = 0 is given by virtue
of the following formulas

g(ϕAY, Y ) = µg(ϕY, Y ) = 0,
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Ric(ϕAY ) = µ{(2n+ 1) + µh− µ2}ϕY,

and

g((∇ξA)Y, Y ) = −µg(∇ξY, Y ) = 0.

Since 1 + αµ = 1 + (cot(r)− tan(r))(−tan(r)) = tan2(r) ̸= 0 for 0 < r < π
2 for

isometric Reeb flow M in CPn, (5.7) implies that

(5.8) g(Y,Df) = 0 and g(ξ,Df) = 0

for any Y ∈ Tµ, µ = −tan r. For a geodesic hypersphere of type (A1) in CPn

it holds either g(Y,Df) = 0 for Y ∈Tλ = C or for Y ∈Tµ = C from the above
decomposition, where C denotes the orthogonal complement of the Reeb vector
field ξ in the tangent space TM of M in CPn. Of course, it also holds g(ξ,Df) = 0
for a geodesic hypersphere in CPn.

Summing up (5.5), (5.8) and the above documents, the gradient of the smooth
function f is identically vanishing, that is, g(Y,Df) = 0 for any tangent vector field
Y ∈ TzM , z ∈ M . Consequently, we can conclude that the gradient pseudo Ricci
Bourguignon soliton (M,Df, η,Ω, θ, γ, g) is trivial. That is, Df = 0, the poten-
tial function f is constant on M . Then it means that the gradient pseudo Ricci-
Bourguignon soliton (5.1) becomes pseudo-Einstein. That is, by Proposition 3.3,
we get Ric(X) = (Ω + θγ)X − ψη(X)ξ, where Ω + θγ = 2n and ψ = 2.

Consequently, by virtue of Theorem 1 and Theorem C, we give a complete proof
of our Theorem 2 in the Introduction.

6. Gradient Pseudo Ricci-Bourguignon Soliton on Contact Real Hyper-
surfaces in CPn

In this section, we want to give a property for gradient pseudo Ricci-
Bourguignon soliton on a contact real hypersurface M in the complex projective
space CPn. Then by Theorem B the scalar curvature γ is constant. The gradient
pseudo Ricci-Bourguignon soliton (M,Df, η,Ω, θ, γ, g) gives the following for any
tangent vector field X on M in CPn

(6.1) ∇XDf +Ric(X) + ψη(X) = (Ω + θγ)X.

Then by differentiating (6.1), the curvature tensor of Df = gradf is given by the
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following

R(X,Y )Df =∇X∇YDf −∇Y ∇XDf −∇[X,Y ]Df

=− (∇XRic)Y − Ric(∇XY )− ψ(∇Xη)(Y )ξ − ψη(∇XY )ξ

− ψη(Y )∇Xξ + (Ω + θγ)∇XY

+ (∇Y Ric)X +Ric(∇YX) + ψ(∇Y η)(X)ξ + ψη(∇YX)ξ

+ ψη(X)∇Y ξ − (Ω + θγ)∇YX

+Ric([X,Y ])− (Ω + θγ)[X,Y ] + ψη([X,Y ])ξ

=(∇Y Ric)X − (∇XRic)Y − ψ(∇Xη)(Y )ξ + ψ(∇Y η)(X)ξ

− ψη(Y )∇Xξ + ψη(X)∇Y ξ

(6.2)

where we have used the Ricci soliton constant θ and gradient pseudo Ricci-
Bourguignon soliton constant Ω, and the scalar curvature γ is constant on a contact
real hypersurface M in CPn in Proposition 3.5.

Now let us assume that M is a contact real hypersurface in CPn, which is
characterized by

Aϕ+ ϕA = kϕ,where k ̸=0 : constant.

Then it is Hopf and the Ricci operator is given by

Ric(X) = (2n+ 1)X − 3η(X)ξ + hAX −A2X

for any tangent vector field X on M . From this, let us put X = ξ. Then M being
Hopf and Aξ = αξ implies

Ric(ξ) = ℓξ,

where ℓ = 2(n − 1) + hα − α2 is constant, and the mean curvature h = TrA is
constant for a contact hypersurfaceM in CPn. Then by taking covariant derivative
to the Ricci operator, we have

(∇XRic)ξ = ∇X(Ric(ξ))− Ric(∇Xξ) = ℓϕAX − Ric(ϕAX),

and

(∇ξRic)(X) =∇ξ(RicX)− Ric(∇ξX)

=h(∇ξA)X − (∇ξA
2)X.

From (6.2), together with above formula, by putting X = ξ we have the following
for a contact hypersurface M in CPn

R(ξ, Y )Df =(∇Y Ric)ξ − (∇ξRic)Y

− ψ(∇ξη)(Y )ξ + ψ(∇Y η)(ξ)ξ − ψη(Y )∇ξξ + ψη(ξ)∇Y ξ

=(ℓ+ ψ)ϕAY − Ric(ϕAY )− h(∇ξA)Y + (∇ξA
2)Y.

(6.3)
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Then the diagonalization of the shape operator A of the contact real hypersurface
in complex projective space CPn is given by

A = diag
(
2cot(2r),−cot(

π

4
− r), · · · ,−cot(

π

4
− r)︸ ︷︷ ︸

n−1

, tan(
π

4
− r), · · · , tan(π

4
− r)︸ ︷︷ ︸

n−1

)
.

Here by Proposition 3.5 the principal curvatures are given by α = 2cot(2r), λ =
−cot(π4 − r) and µ = tan(π4 − r) with multiplicities 1, n− 1 and n− 1 respectively.
All of these principal curvatures satisfy

κ = λ+ µ = −cot(
π

4
− r) + tan(

π

4
− r) = −2tan(2r) = − 4

α
.

On the other hand, the curvature tensor R(X,Y )Z of M induced from the
curvature tensor R̄(X,Y )Z of the complex projective space CPn gives

R(ξ, Y )Df =g(Y,Df)ξ − g(ξ,Df)Y

+ g(AY,Df)Aξ − g(Aξ,Df)AY

=(1 + αλ){g(Y,Df)ξ − g(ξ,Df)Y }

(6.4)

for any Y ∈ Tλ, λ = −cot(π4 − r) for a contact real hypersurface M in the complex
projective space CPn. Consequently, (6.3) and (6.4) give

(ℓ+ψ)ϕAY −Ric(ϕAY )−h(∇ξA)Y +(∇ξA
2)Y = (1+αλ){g(Y,Df)ξ−g(ξ,Df)Y }.

From this, by taking the inner product with the Reeb vector field ξ, we have

(6.5) (1 + αλ)g(Y,Df) = 0.

Then for any Y ∈ Tλ in (6.5) it follows that

(6.6) g(Y,Df) = 0,

where we have noted that 1 + αλ = 1 + 2cot(2r)(−cot(π4 − r)) ̸=0. Because if we
assume that 1 = 2cot(2r)cot(π4 − r), then tan(2r) = 2cot(π4 − r). Then it follows
that

(cos(r)− sin(r))sin(r)cos(r) = (cos(r) + sin(r))2(cos(r)− sin(r)),

which gives sin(r)cos(r) = −1. This gives us a contradiction for 0 < r < π
4 .

Accordingly, the gradient vector field Df is orthogonal to the eigenspace Tλ, that
is, g(Y,Df) = 0 for any Y ∈Tλ.

Next, we consider for Y ∈ Tµ, µ = tan(π4 − r) in Proposition 3.5. Then using
these properties in (6.3) and (6.4) implies the following

(ℓ+ψ)ϕAY −Ric(ϕAY )−h(∇ξA)Y +(∇ξA
2)Y = (1+αµ){g(Y,Df)ξ−g(ξ,Df)Y }.
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From this, by taking the inner product with the Reeb vector field ξ, we get

(6.7) g(Y,Df) = 0 for any Y ∈ Tµ,

where 1 + αµ̸=0. If we assume that 1 + αµ = 0, then by Proposition 3.5, we

get 1 + 2cot(2r)tan(π4 − r) = 0. Then it gives −tan(2r) = 2 cos(r)−sin(r)
cos(r)+sin(r) . Since

tan(2r) = sin(2r)
cos(2r) , we get the following

(cos(r) + sin(r))sin(r)cos(r) =− (cos(r)− sin(r))(cos2(r)− sin2(r))

=− (cos(r)− sin(r))2(cos(r) + sin(r)).

From cos(r)+ sin(r)̸=0 we get sin(r)cos(r) = 1, which gives also a contradiction for
0 < r < π

4 .

Finally, let us take the inner product the above formula with Y ∈ Tµ, and use
AY = µY , AϕY = λϕY for a contact hypersurface in CPn, we have

−(1 + αµ)g(ξ,Df) =(ℓ+ ψ)g(ϕAY, Y )− g(Ric(ϕAY ), Y )

− hg((∇ξA)Y, Y ) + g((∇ξA
2)Y, Y )

=0,

where in the second equality we have used the following formulas

Ric(ϕAY ) =(2n+ 1)ϕAY + hAϕAY −A2ϕAY

=µ{(2n+ 1) + λh− λ2}ϕY,

g((∇ξA)Y, Y ) =g(∇ξ(AY )−A∇ξY, Y )

=g(µ∇ξY −A∇ξY, Y ) = 0.

and

g((∇ξA
2)Y, Y ) =g(∇ξ(A

2Y )−A2∇ξY, Y )

=g(µ2∇ξY −A2∇ξY, Y )

=µ2g(∇ξY, Y )− µ2g(∇ξY, Y ) = 0.

From this, together with 1 + αµ̸=0, we can assert that

(6.8) g(ξ,Df) = 0.

Consequently, from (6.6), (6.7) and (6.8) it follows that the gradient vector field Df
is identically vanishing on the tangent space TxM = Tλ⊕Tµ⊕Tα, x∈M . Then
Df = 0 in (6.1) means that M is pseudo-Einstein Ric(X) = (Ω + θγ)X − ψη(X)ξ,
x∈M . Since λ+ µ = − 4

α , we get the following

Lemma 6.1 Let M be a contact real hypersurface in CPn, n≥3. If M satisfies
gradient pseudo Ricci-Bourguignon soliton, then M is pseudo-Einstein and

h = λ+ µ.
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Proof. By the above arguments, we get thatM is pseudo-Einstein. Then Theorem C
gives cot2(2r) = n− 2. From this it follows that

h+
4

α
=2cot(2r)− 2(n− 1)tan(2r) + 2tan(2r)

=2cot(2r)− 2(n− 2)tan(2r)

=2
cot2(2r)− (n− 2)

cot(2r)

=0.

From this, together with λ + µ = − 4
α , it becomes h = λ + µ. This completes the

proof of our lemma.

Then if we put Ric(X) = aX + bη(X)ξ, then the constants a and b can be
calculated as follows:

Proposition 6.2 Let M be a contact real hypersurface in CPn, n≥3. If M satis-
fies gradient pseudo Ricci-Bourguignon soliton, then M is pseudo-Einstein and the
soliton constants are given by

a = Ω+ θγ = 2n, and b = −ψ = −2(n− 1).

Proof. Since M is pseudo-Einstein, we may put Ric(X) = aX + bη(X)ξ. Then
from (3.2) it follows that

a+ b = g(Ric(ξ), ξ) = 2(n− 1) + hα− α2

= 2(n− 1) + {2cot(2r)− 2(n− 1)tan(2r)}(2cot(2r))− (2cot(2r))2

= 2(n− 1)− 4(n− 1) = −2(n− 1).

Next for any vector field X∈Tλ, (3.2) implies the following

Ric(X) = (2n+ 1)X + hAX −A2X = {(2n+ 1) + hλ− λ2}X.

Then by using Lemma 6.1 it follows that

a = g(Ric(X), X) = (2n+ 1) + hλ− λ2

= (2n+ 1) + (λ+ µ)λ− λ2

= (2n+ 1) + λµ = (2n+ 1)− 1 = 2n.

Then the other constant b = −2(n − 1) − 2n = −2(2n − 1). So from the pseudo-
Einstein property

Ric(X) = aX + bη(X)ξ = (Ω + θγ)X − ψη(X)ξ

we get the above assertion.
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Then summing up the above discussion, together with Lemma 6.1 and Propo-
sition 6.2, we give a complete proof of our Main Theorem 3 in the introduction.

Remark 6.3. The metric g of a Riemannian manifold M of dimension n≥3 is said
to be a gradient η-Einstein soliton [5] if there exists a smooth function f onM such
that

Ric(X) +∇2f + ψη(X)ξ = (Ω +
1

2
γ)X,

where γ denotes the scalar curvature of M and Ω and ψ are η-Einstein gradient
soliton constants on M . Here ∇2f denotes the Hessian operator of g and f the
Einstein potential function of the η-gradient Einstein soliton. So this soliton is an
example of gradient pseudo Ricci-Bourguignon soliton.

Remark 6.4. Let M be a contact real hypersurface in CPn, n≥3, with gradient
η-Einstein soliton. Then Lemma 6.1 implies that M is pseudo-Einstein. So by
Theorem C it satisfies cot2(2r) = n− 2. From this and Proposition 3.5 implies that
the scalar curvature is given by

γ = 4(n− 1)2 + 4(n− 1)(n− 2)tan2(2r)

= 4n(n− 1).

Moreover, by the definition of gradient η-Einstein soliton, the soliton constant θ in
Remark 6.3 is given by θ = 1

2 . Then by Proposition 6.2, it gives

Ω = 2n+
1

2
γ = 2n+ 2n(n− 1) = 2n2 > 0.

This means that the gradient η-Einstein soliton becomes shrinking.
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