• Title/Summary/Keyword: pseudo order

Search Result 1,051, Processing Time 0.024 seconds

Adsorption Characteristics of Ammonia-Nitrogen by Zeolitic Materials Synthesized from Jeju Scoria (제주 스코리아로부터 합성한 제올라이트 물질에 의한 암모니아성 질소의 흡착 특성)

  • Lee, Chang-Han;Hyun, Sung-Su;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.29 no.12
    • /
    • pp.1261-1274
    • /
    • 2020
  • The characteristics of ammonia-nitrogen (NH4+-N) adsorption by a zeolitic material synthesized from Jeju scoria using the fusion and hydrothermal method was studied. The synthetic zeolitic material (Z-SA) was identified as a Na-A zeolite by X-ray diffraction, X-ray fluorescence analysis and scanning electron microscopy images. The adsorption of NH4+-N using Jeju scoria and different types of zeolite such as the Z-SA, natural zeolite, and commercial pure zeolite (Na-A zeolite, Z-CS) was compared. The equilibrium of NH4+-N adsorption was reached within 30 min for Z-SA and Z-CS, and after 60 min for Jeju scoria and natural zeolite. The adsorption capacity of NH4+-N increased with approaching to neutral when pH was in the range of 3-7, but decreased above 7. The removal efficiency of NH4+-N increased with increasing Z-SA dosage, however, its adsorption capacity decreased. For initial NH4+-N concentrations of 10-200 mg/L at pH 7, the adsorption rate of NH4+-N was well described by the pseudo second-order kinetic model than the pseudo first-order kinetic model. The adsorption isotherm was well fitted by the Langmuir model. The maximum uptake of NH4+-N obtained from the Langmuir model decreased in the order of Z-CS (46.8 mg/g) > Z-SA (31.3 mg/g) > natural zeolite (5.6 mg/g) > Jeju scoria (0.2 mg/g).

DISCONTINUOUS GALERKIN SPECTRAL ELEMENT METHOD FOR ELLIPTIC PROBLEMS BASED ON FIRST-ORDER HYPERBOLIC SYSTEM

  • KIM, DEOKHUN;AHN, HYUNG TAEK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.4
    • /
    • pp.173-195
    • /
    • 2021
  • A new implicit discontinuous Galerkin spectral element method (DGSEM) based on the first order hyperbolic system(FOHS) is presented for solving elliptic type partial different equations, such as the Poisson problems. By utilizing the idea of hyperbolic formulation of Nishikawa[1], the original Poisson equation was reformulated in the first-order hyperbolic system. Such hyperbolic system is solved implicitly by the collocation type DGSEM. The steady state solution in pseudo-time, which is the solution of the original Poisson problem, was obtained by the implicit solution of the global linear system. The optimal polynomial orders of 𝒪(𝒽𝑝+1)) are obtained for both the solution and gradient variables from the test cases in 1D and 2D regular grids. Spectral accuracy of the solution and gradient variables are confirmed from all test cases of using the uniform grids in 2D.

Reduction of Alkyl Halides by Homonuclear Bridging Hydride, (μ-H)[(η$^5-MeCp)$Mn(CO)₂]₂-ppn+

  • 박용광;김영웅
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.3
    • /
    • pp.269-273
    • /
    • 1996
  • Alkyl halides were reduced to the corresponding alkanes by the homonuclear bridging hydride, (μ-H)[(η5-MeCp)Mn(CO)2]2-PPN+ in THF at the elevated temperatures (40-60 ℃) under the pseudo first order reaction conditions where excess of alkyl halide was employed under nitrogen atmosphere. The reaction is of overall second order; first order with respect to [bridging hydride] and first order with respect to [alkyl halide] with the activation parameters, ΔH≠=28.93 kcal/mol and ΔS≠=17.95 e.u. The kinetic data, the ESR evidence and the reaction with cyclopropyl canbinyl bromide ensure that two possible reaction pathways are operable in this reaction: (1) concerted mechanism, and (2) single electron transfer pathway are in competition leading to the same product, the corresponding alkane.

Separation and Adsorption-Desorption Characteristics of Heavy Rare Earth Elements (Gd, Tb, Dy) using P507 Resin (P507 추출수지를 이용한 중희토류 원소(Gd, Tb, Dy)의 흡탈착 분리특성에 관한 연구)

  • Lee, Sungeun;Kim, Joung Woon;Jeon, Jong Hyuk;Jun, Hong Myeong;Lee, Jin Young;Han, Choon
    • Resources Recycling
    • /
    • v.25 no.4
    • /
    • pp.60-67
    • /
    • 2016
  • This study was conducted to establish the adsorption-desorption mechanism and the optimum condition of chromatographic operation for separations of heavy rare earth elements (Gd, Tb, Dy) using a p507-containing resin. By employing Langmuir and Freundlich isotherm together with pseudo first and second order kinetics, absorption-desorption reaction mechanism was investigated. Langmuir and Freundlich isotherm was applied under assumption that adsorption reaction occurs in form of monolayer, and because the result was identical to the assumption, now we know adsorption of heavy rare earth elements occurs in form of monolayer. Concerning the pseudo first and second order kinetic, the pseudo second order seemed to be more suitable to represent heavy rare earth element adsorption mechanism. By using the extraction chromatography to separate heavy rare earth elements, ${\alpha}^{Tb}_{Gd}=1.24$, and ${\alpha}^{Dy}_{Tb}=1.03$ were confirmed in eluent HCl 0.25 M which indicates almost perfect separations of three elements. Furthermore, as concentrations of eluent became higher, the resolution value decreased and the elution area got shortened.

Adsorption Kinetic and Thermodynamic Studies of Tricyclazole on Granular Activated Carbon (입상 활성탄에 대한 트리사이크라졸의 흡착동력학 및 열역학적 연구)

  • Lee, Jong-Jib;Cho, Jung-Ho;Kim, H.T.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.9
    • /
    • pp.623-629
    • /
    • 2011
  • The adsorption characteristics of tricyclazole by granular activated carbon were experimently investigated in the batch adsorption. Kinetic studies of adsorption of tricyclazole were carried out at 298, 308 and 318 K, using aqueous solutions with 250, 500 and 1,000 mg/L initial concentration of tricyclazole. It was established that the adsorption equilibrium of tricyclazole on granular activated carbon was successfully fitted by Freundlich isotherm equation at 298 K. The pseudo first order and pseudo second order models were used to evaluate the kinetic data and the pseudo second order kinetic model was the best with good correlation. Values of the rate constant ($k_2$) have been calculated as 0.1076, 0.0531, and 0.0309 g/mg h at 250, 500 and 1,000 mg/L initial concentration of tricyclazole, respectively. Thermodynamic parameter such as activation energy, standard enthalpy, standard entropy and standard free energy were evaluated. The positive value for enthalpy, -66.43 kJ/mol indicated that adsorption interaction of tricyclazole on activated carbon was an exothermic process. The estimated values for standard free energy were -5.08~-8.10 kJ/mol over activated carbon at 200 mg/L, indicated toward a exothermic process.

An Investigative Study on the Characterization of Cefaclor Decomposition in UV/H$_2$O$_2$ Process (UV/H$_2$O$_2$공정에 의한 Cefaclor 분해 특성에 관한 기초연구)

  • Cho, Chun-Ki;Han, Ihn-Sup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.10
    • /
    • pp.1039-1046
    • /
    • 2008
  • The combining process of UV irradiation and H$_2$O$_2$ was used to investigate characteristics of cefaclor decomposition in the aquatic environment. The separate mixing tank was used to minimize the decreasing effective of contact area caused by sampling. Four baffles were installed inside the UV reactor for the complete mixing of the sample and outside of the reactor was wrapped with aluminum foil to protect the emission of photon energy. Production of OH radical was measured using pCBA(p-Chlorobenzoic acid) indirectly and rate constants were withdrawn pseudo-frist order reaction. Optimum condition for the maximum production of OH radical was found to be pH 3, hydrogen peroxide of 5 mmol/L and recirculation rate of 400 mL/min. Pseudo-frist order reaction rate constant was 0.1051 min$^{-1}$. In the optimum condition, cefaclor was completely decomposed within 40 min and rate constant was 0.093 min$^{-1}$. Decomposition by OH radical producted intermediate anions such as chloride, nitrate, sulfite and acetic acid and phenylglycine. After 6 hr most cefaclor was decomposed by UV/H$_2$O$_2$ process and converted to CO$_2$ and H$_2$O, resulting of operation in the decrease of TOC and acetic acid and the disappearance of phenylglycine.

Study on Adsorption Kinetic Characteristics of Propineb Pesticide on Activated Carbon (활성탄에 대한 프로피네브 농약의 흡착동력학적 특성 연구)

  • Lee, Jong-Jib;Cho, Jung-Ho;Kim, Heung-Tae
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.346-352
    • /
    • 2011
  • The adsorption characteristics of propineb pesticide onto activated carbon has been investigated for the adsorption in aqueous solution with respect to initial concentration, contact time and temperature in batch experiment. The Langmuir and Freundlich adsorption models were applied to described the equilibrium isotherms and isotherm constants were also determined. The Freundlich model agrees with experimental data well. slope of isotherm line indicate that activated carbon could be employed as effective treatment for removal of propineb. The pseudo first order, pseudo second order kinetic models were use to describe the kinetic data and rate constants were evaluated. The adsorption process followed a pseudo second order model, and the adsorption rate constant($k_2$) decreased with increasing initial concentration of propineb. The activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption. The estimated values for change of free energy were -7.28, -8.27 and -11.66 kJ/mol over activated carbon at 298, 308 and 318 K, respectively. The results indicated toward a spontaneous process. The positive value for change of enthalpy, 54.46 kJ/mol, found that the adsorption of propineb on activated carbon is an endothermic process.

Oxidative Transformation of 1-Naphthol Using Manganese Oxide (망간산화물을 이용한 1-Naphthol의 산화 제거 연구)

  • Lim, Dong-Min;Kang, Ki-Hoon;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.535-542
    • /
    • 2006
  • In this study, removals of 1-naphthol by oxidative-coupling reaction using birnessite, one of natural Mn oxides present in soil, was investigated in various experimental conditions(reaction time, Mn oxide loadings, pH, etc). Removal efficiency of 1-naphthol by birnessite was high in all the experimental conditions, and UV-vis. and mass spectrometric analyses on the supernatant after reaction confirmed that the reaction products were oligomers formed by oxidative-coupling reaction. Pseudo-first order rate constants, f, for the oxidative transformation of 1-naphthol by birnessite was derived from the kinetic experiments under various amount of birnessite loadings, and using the observed pseudo-first order rate constants with respect to birnessite loadings, surface area-normalized specific rate constant, $k_{surf}$ was also determined to be $9.31{\times}10^{-4}(L/m^2{\cdot}min)$ for 1-naphthol. In addition, the oxidative transformation of 1-naphthol was found to be dependent on solution pH, and the pseudo-first order rate constants were increased from 0.129 at pH 10 to 0.187 at pH 4.

Evaluation of Removal Characteristics of Taste and Odor Causing Compounds using Meso-Porous Absorbent (메조공극 흡착제를 이용한 상수원수내 맛·냄새 유발물질 제거특성 평가)

  • Kim, Jong-Doo;Park, Chul-Hwi;Yun, Yeo-Bog;Lee, Dae-Sung;Kim, Hyo-Jeon;Kang, Seok-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.1
    • /
    • pp.26-33
    • /
    • 2017
  • The objective of this study was to evaluate the characteristic of adsorption by using a meso-porous adsorbent (MPA), and investigate the removal efficiency of geosmin which taste and odor causing compounds in drinking water supplies through batch test. The results for the adsorption isotherm was analyzed by using the Langmuir equation and Freundlich equation, generally being applied. And the study showed that the both Langmuir and Freundlich equation explains the results better. Both of pseudo-first-order model and pseudo-second-order model were respectively applied for evaluation of kinetic sorption property of geosmin onto MPA. The adsorption experiment results using MPA showed that maximum adsorption capacity of MPA was lower 7 times than that of GAC, and adsorption rate of MPA was faster 11 times than that of GAC, on the basis of pseudo-first-order model. Therefore, it was determined that MPA was effectively able to remove geosmin in drinking water supplies in short EBCT condition, but regeneration cycle in MAP process was shorter than that in conventional process.

Evaluation of Raw and Calcined Eggshell for Removal of Cd2+ from Aqueous Solution

  • Kim, Youngjung;Yoo, Yerim;Kim, Min Gyeong;Choi, Jong-Ha;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.5
    • /
    • pp.249-258
    • /
    • 2020
  • The potential use of egg shell and calcined egg shell as adsorbent was evaluated and compared to remove Cd2+ from aqueous solution. The samples were characterized using Thermogravimetry and Differential Thermal Analysis (TG/DTA), Scanning Electron Microscope (SEM), X-ray Diffractometer (XRD), Energy Dispersive X-ray Spectrometer (EDX) and BET Surface Analyzer. The batch-type adsorption experiment was conducted by varying diverse variables such as contact time, pH, initial Cd2+ concentrations and adsorbent dosage. The results showed that, under the initial Cd2+ concentrations ranged from 25 to 200 mg g-1, the removal efficiencies of Cd2+ by egg shell powder (ESP) were decreased steadily from 96.72% to 22.89% with increase in the initial Cd2+ concentration at 2.5 g of dosage and 8 h of contact time. However, on the contrary to this, calcined egg shell powder (CESP) showed removal efficiencies above 99% regardless of initial Cd2+ concentration. The difference in the adsorption behavior of Cd2+ may be explained due to the different pH values of ESP and CESP in solution. Cd2+ seems to be efficiently removed from aqueous solution by using the CESP with a basicity nature of around pH 12. It was also observed that an optimum dosage of ESP and CESP for nearly complete removal of Cd2+ from aqueous solution is approximately 5.0 g and 1.0 g, respectively. Consequently, Cd2+ is more favorably adsorbed on CESP than ESP in the studied conditions. Adsorption data were applied by the pseudo-first-order and pseudo-second-order kinetics models and Freundlich and Langmuir isotherm models, respectively. With regard to adsorption kinetics tests, the pseudo-second-order kinetics was more suitable for ESP and CESP. The adsorption pattern of Cd2+ by ESP was better fitted to Langmuir isotherm model. However, by contrast with ESP, CESP was described by Freundlich isotherm model well.