An Investigative Study on the Characterization of Cefaclor Decomposition in UV/H$_2$O$_2$ Process

UV/H$_2$O$_2$공정에 의한 Cefaclor 분해 특성에 관한 기초연구

  • Cho, Chun-Ki (Department of Environment Engineering, The University of Seoul) ;
  • Han, Ihn-Sup (Department of Environment Engineering, The University of Seoul)
  • 조준기 (서울시립대학교 환경공학부) ;
  • 한인섭 (서울시립대학교 환경공학부)
  • Published : 2008.10.31

Abstract

The combining process of UV irradiation and H$_2$O$_2$ was used to investigate characteristics of cefaclor decomposition in the aquatic environment. The separate mixing tank was used to minimize the decreasing effective of contact area caused by sampling. Four baffles were installed inside the UV reactor for the complete mixing of the sample and outside of the reactor was wrapped with aluminum foil to protect the emission of photon energy. Production of OH radical was measured using pCBA(p-Chlorobenzoic acid) indirectly and rate constants were withdrawn pseudo-frist order reaction. Optimum condition for the maximum production of OH radical was found to be pH 3, hydrogen peroxide of 5 mmol/L and recirculation rate of 400 mL/min. Pseudo-frist order reaction rate constant was 0.1051 min$^{-1}$. In the optimum condition, cefaclor was completely decomposed within 40 min and rate constant was 0.093 min$^{-1}$. Decomposition by OH radical producted intermediate anions such as chloride, nitrate, sulfite and acetic acid and phenylglycine. After 6 hr most cefaclor was decomposed by UV/H$_2$O$_2$ process and converted to CO$_2$ and H$_2$O, resulting of operation in the decrease of TOC and acetic acid and the disappearance of phenylglycine.

수중에 존재할 수 있는 항생제물질 중 cefaclor를 제거하기 위하여 UV/H$_2$O$_2$ 공정을 적용하였다. 기존 회분식반응기의 경우 시료를 채취하면 시료가 감소하여 UV램프와 제거대상물질의 유효접촉면적이 감소하는 것을 보완하기 위해 외부에 혼합조를 설치하여 실험을 실시하였다. UV반응기 내부는 완전혼합을 위해 4개의 baffle을 설치하였으며 광자의 방출을 방지하기 위해 반응조 외부를 알루미늄 호일로 감쌌다. OH radical의 생성은 pCBA(p-Chlorobenzoic acid)를 이용하여 간접적으로 측정하였으며, 의사일차반응식(pseudo-frist order reaction)을 이용하여 반응속도상수를 구하였다. 본 연구의 최적 OH radical 생성조건은 pH 3, 과산화수소 주입량은 5 mmol/L 그리고 펌프순환유량은 400 mL/min로 나타났으며, 반응속도상수는 0.1051 min$^{-1}$이었다. 최적의 OH radical 생성조건에서 cefaclor는 40 min안에 완전히 제거되었으며 반응속도상수는 0.093 min$^{-1}$이었다. 초기 cefaclor의 농도가 낮을 수록 빠르게 제거되었으며, OH radical에 의해 분해되어 중간생성물질(intermediates)인 chloride(Cl$^-$), nitrate(NO$_3{^{2-}}$), sulfite(SO$_4{^{2-}}$) 그리고 acetic acid(CH$_3$COO$^-$) 등의 음이온과 phenylglycine을 생성하였다. 반응시간 6 hr 이후 TOC의 77% 감소, phenylglycine의 소멸 그리고 acetic acid가 감소하는 것으로 보아 cefaclor는 UV/H$_2$O$_2$ 공정에 의해 빠르게 분해될 뿐만 아니라 CO$_2$와 H$_2$O의 형태로 무해화(mineralization)되는 것으로 보인다.

Keywords

References

  1. 권영일, 김태운, 김해영, 장윤희, 곽효선, 우건조, 정윤희, '국내 축산 환경 중의 항생제 내성균 모니터링에 관한 연구,' 한국미생물생명공학회지, 35(1), 17-25(2007)
  2. 식품의약품안전청, '축산용 항생제 관리시스템 구축,'(2006)
  3. Roman Hirsch, 'Occurrence of antibiotics in the aquatic environment,' The Science of The Total Environment, 225(1'2), 109-118(1999) https://doi.org/10.1016/S0048-9697(98)00337-4
  4. Thomas H, 'Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data,' Toxicology Letters, 131, 5-17(2002) https://doi.org/10.1016/S0378-4274(02)00041-3
  5. 국립환경과학원, '환경중 의약물질 분석방법 연구 및 노출실태조사,'(2006)
  6. 간은성, 박성범, 고창일, 이상준, 강준원, '$H_2O_2/UV$ 공정을 이용한 난분해성 물질의 처리에 있어서 UV lamp별 처리특성,' J. Korea Solid Wastes Engineering Society, 16(2), 197-203(1999)
  7. Lambert K. Sorensen and Lena K. Snor, 'Determination of cephalosporins in raw bovine milk by high'performance liquid chromatography,' J. Chromatography A, 882(1-2), 145-151(2000) https://doi.org/10.1016/S0021-9673(99)01317-5
  8. Liao, C. H., Kang, S. F. and Wu, F. A., 'Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H2O2/UV process,' Chemosphere, 44(5), 1193-1200(2001) https://doi.org/10.1016/S0045-6535(00)00278-2
  9. Galindo, C. and Kalt, A. '$UV'H_2O_2$ Oxidation of monoazo dyes in aqueous media: a kinetic study,' Dyes and Pigments, 40, 27-35(1998)
  10. Daneshvar, N., Behnajady, M. A., and Asghar, Y. Z., 'Photooxidative degradation of 4'nitrophenol(4'NP) in $UV'H_2O_2$ process: Influence of operational parameters and reaction mechanism,' J. Hazardous Materials, 139(2), 275-279(2007) https://doi.org/10.1016/j.jhazmat.2006.06.045
  11. Ravina, M., Campanella, L. and Kiwi, J., 'Accelerated mineralization of the drug Diclofenac via Fenton reactions in a concentric photo'reactor,' Water Res., 36(14), 3553-3560(2002) https://doi.org/10.1016/S0043-1354(02)00075-1
  12. D'Oliveira, J. Al'Sayyed, G., and Pichat, P., 'Photodegradation of 2' and 3' chlorophenols in $TiO_2$ Aqueous Suspensions,' Environ. Sci. Technol., 24(7), 990-996(1990) https://doi.org/10.1021/es00077a007
  13. Watkinson, A. J., Murby, E. J., and Costanzo, S. D., 'Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling,' Water Res., 41(18), 4164-4176(2007) https://doi.org/10.1016/j.watres.2007.04.005
  14. Muruganandham, M. and Swaminathan, M., 'Photochemical oxidation of reactive azo dye with $UV'H_2O_2$ process,' Dyes and Pigments, 62(3), 269-275(2004) https://doi.org/10.1016/j.dyepig.2003.12.006
  15. Gunten, U. V., 'Ozonation of drinking water: Part I. Oxidation kinetics and product formation,' Water Res., 37(7), 1443-1467(2003) https://doi.org/10.1016/S0043-1354(02)00457-8
  16. Andreozzi, R., Canterino, M., Marotta, R., and Paxeus, N., 'Antibiotic removal from wastewaters: The ozonation of amoxicillin,' J. Hazardous Materials, 122(3), 243-250(2005) https://doi.org/10.1016/j.jhazmat.2005.03.004