Browse > Article
http://dx.doi.org/10.12941/jksiam.2021.25.173

DISCONTINUOUS GALERKIN SPECTRAL ELEMENT METHOD FOR ELLIPTIC PROBLEMS BASED ON FIRST-ORDER HYPERBOLIC SYSTEM  

KIM, DEOKHUN (SCHOOL OF NAVAL ARCHITECTURE AND OCEAN ENGINEERING, UNIVERSITY OF ULSAN)
AHN, HYUNG TAEK (SCHOOL OF NAVAL ARCHITECTURE AND OCEAN ENGINEERING, UNIVERSITY OF ULSAN)
Publication Information
Journal of the Korean Society for Industrial and Applied Mathematics / v.25, no.4, 2021 , pp. 173-195 More about this Journal
Abstract
A new implicit discontinuous Galerkin spectral element method (DGSEM) based on the first order hyperbolic system(FOHS) is presented for solving elliptic type partial different equations, such as the Poisson problems. By utilizing the idea of hyperbolic formulation of Nishikawa[1], the original Poisson equation was reformulated in the first-order hyperbolic system. Such hyperbolic system is solved implicitly by the collocation type DGSEM. The steady state solution in pseudo-time, which is the solution of the original Poisson problem, was obtained by the implicit solution of the global linear system. The optimal polynomial orders of 𝒪(𝒽𝑝+1)) are obtained for both the solution and gradient variables from the test cases in 1D and 2D regular grids. Spectral accuracy of the solution and gradient variables are confirmed from all test cases of using the uniform grids in 2D.
Keywords
Discontinuous Galerkin(DG) method; Spectral element method; Poisson equation; First order hyperbolic system(FOHS);
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Luo, J. Baum, R. Lohner, J. Cabello, Implicit schemes and boundary conditions for compressible flows on unstructured grids, 32nd Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA, 1994, 1994-816.
2 D.A. Kopriva, J.H. Kolias, A conservative staggered-grid Chebyshev multidomain method for compressible flows, Journal of Computational Physics 125 (1) (1996) 244-261.   DOI
3 D.A. Kopriva, A conservative staggered-grid Chebyshev multidomain method for compressible flows. II. A semi-structured method, Journal of Computational Physics 128 (2) (1996) 475-488.   DOI
4 D.A. Kopriva, A staggered-grid multidomain spectral method for the compressible Navier-Stokes equations, Journal of Computational Physics 143 (1) (1998) 125-158.   DOI
5 D.A. Kopriva, G.J. Gassner, An energy stable discontinuous Galerkin spectral element discretization for variable coefficient advection problems, SIAM Journal on Scientific Computation. 36 (4) (2014) A2076-A2099.   DOI
6 G.J. Gassner, A.R. Winters, D.A. Kopriva, Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations, J. Comput. Phys. 327 (2016) 39-66.   DOI
7 J. Lou, L. Li, H. Luo, H. Nishikawa, Reconstructed discontinuous Galerkin methods for linear advection-diffusion equations based on first-order hyperbolic system, Journal of Computational Physics 369 (2018) 103-124.   DOI
8 B. Cockburn, C.W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, Mathematics of computation 52 (186) (1989), 411-435.   DOI
9 B. Cockburn, C.W. Shu, The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, Journal of Computational Physics 141 (2) (1998), 199-224.   DOI
10 D. Gottlieb, J.S. Hesthaven, Spectral methods for hyperbolic problems, Journal of Computational and Applied Mathematics 128 (1-2) (2001), 83-131.   DOI
11 Y. Liu, M. Vinokur, Z.J. Wang, Spectral difference method for unstructured grids I: basic formulation, Journal of Computational Physics 216 (2) (2006) 780-801.   DOI
12 J.S. Hesthaven, T. Warburton, Nodal discontinuous Galerkin methods: algorithms, analysis, and applications, Springer Science & Business Media, 2007.
13 D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM journal on numerical analysis 39 (5) (2002), 1749-1779.   DOI
14 J. Peraire, P.O. Persson, The compact discontinuous Galerkin (CDG) method for elliptic problems, SIAM Journal on Scientific Computation, 30 (4) (2008), 1806-1824.   DOI
15 B. Cockburn, C.W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, Journal of Scientific Computing 16 (3) (2001), 173-261.   DOI
16 D. Arnold, An interior penalty finite element method with discontinuous elements, SIAM Journal on Numerical Analysis 19(4) (1982) 742-760.   DOI
17 H. Nishikawa, First-, second-, and third-order finite-volume schemes for diffusion, Journal of Computational Physics 256 (2014) 791-805.   DOI
18 F. Hindenlang, G.J. Gassner, C. Altmann, A. Beck, M. Staudenmaier, C.D. Munz, Explicit discontinuous Galerkin methods for unsteady problems, Comput. Fluids 61 (2012) 86-93.   DOI
19 E. Lee, H.T. Ahn, H. Luo, Cell-centered high-order hyperbolic finite volume method for diffusion equation on unstructured grids, Journal of Computational Physics 335 (2018) 464-491.
20 W. Reed, T. Hill, Triangular mesh methods for the neutron transport equation, Technical Report, Los Alamos Scientific Laboratory/LA-UR-73-479 (1973)
21 B. Cockburn, S.Y. Lin, C.W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems, Journal of Computational Physics 84(1) (1989), 90-113.   DOI
22 B. Cockburn, S. Hou, C.W. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, Mathematics of Computation 54 (190) (1990), 545-581.   DOI
23 D. Xiu, J.S. Hesthaven, High-order collocation methods for differential equations with random inputs, SIAM Journal on Scientific Computing 27 (3) (2005), 1118-1139.   DOI
24 F. Bassi, S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, Journal of Computational Physics 131 (1997), 267-279.   DOI
25 H. Luo, J.D. Baum, R. Lohner, A discontinuous Galerkin method based on a Taylor basis for the compressible flows on arbitrary grids, Journal of Computational Physics 227 (20) (2008) 8875-8893.   DOI
26 H. Luo, L. Luo, R. Nourgaliev, V.A. Mousseau, N. Dinh, A reconstructed discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids, Journal of Computational Physics 229 (19) (2010) 6961-6978.   DOI
27 J.S. Hesthaven, Numerical methods for conservation laws: From analysis to algorithms, Society for Industrial and Applied Mathematics, 2017.
28 H. Nishikawa, First-, second-, and third order finite-volume schemes for advection-diffusion, Journal of Computational Physics 273 (2014) 287-309.   DOI
29 B. Cockburn, C.W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM Journal on Numerical Analysis 35 (6) (1998), 2440-2463.   DOI
30 J.S. Hesthaven, T. Warburton, Nodal high-order methods on unstructured grids: I. Time-domain solution of Maxwell's equations, Journal of Computational Physics 181 (1) (2002) 186-221.   DOI
31 A. Mazaheri, H. Nishikawa, First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems, NASA Technical Reports, NASA/TM-2014-218175 (2014)
32 H. Nishikawa, New-Generation hyperbolic Navier-Stokes schemes: O(1/h) speed-up and accurate viscous/heat fluxes, 20th AIAA Computational Fluid Dynamics Conference, Honolulu, Hawaii, USA, 2011, 2011-3043.
33 Y. Nakashima, N. Watanabe, H. Nishikawa, Hyperbolic Navier-Stokes solver for three-dimensional flows, 54th AIAA Aerospace Science Meeting, San Diego, California, USA, 2016, 2016-1101.
34 H. Nishikawa, A first-order system approach for diffusion equation. II: Unification of advection and diffusion, Journal of Computational Physics, 229(11) (2010) 3989-4019   DOI
35 L. Li, J. Lou, H. Luo, H. Nishikawa, High-order hyperbolic Navier-Stokes reconstructed discontinuous Galerkin method, Scitech 2019 Forum, San Diego, California, USA, 2019, 2019-1150
36 D.A. Kopriva, G.J. Gassner, On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods, SIAM Journal on Scientific Computation. 44 (2) (2010) 136-155.
37 D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, Discontinuous Galerkin methods for elliptic problems, Discontinuous Galerkin Methods, Springer, Berlin, Heidelberg, 2000, 89-101.
38 D.A. Kopriva, Implementing spectral methods for partial differential equations: Algorithms for scientists and engineers, Springer Science & Business Media, 2009.
39 F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, M. Savini, A high-order accurate discontinuous finite element method fir inviscid an viscous turbomachinery flows, 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, Technologisch Instituut, Antwerpen, Belgium, 1997. 99-109.
40 L. Li, J. Lou, H. Luo, H. Nishikawa, High-order hyperbolic Navier-Stokes reconstructed discontinuous Galerkin method for unsteady flows, AIAA Aviation 2019 Forum, Dallas, Texas, USA, 2019, 2019-3060
41 H. Nishikawa, A first-order system approach for diffusion equation. I: Second-order residual-distribution schemes, Journal of Computational Physics, 227(1) (2007) 315-352.   DOI