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ABSTRACT. A new implicit discontinuous Galerkin spectral element method (DGSEM) based on the 

first order hyperbolic system(FOHS) is presented for solving elliptic type partial different equations, 

such as the Poisson problems.  By utilizing the idea of hyperbolic formulation of Nishikawa[1], the 

original Poisson equation was reformulated in the first-order hyperbolic system.  Such hyperbolic 

system is solved implicitly by the collocation type DGSEM.  The steady state solution in pseudo-

time, which is the solution of the original Poisson problem, was obtained by the implicit solution of 

the global linear system.  The optimal polynomial orders of 𝒪(𝒽𝑝+1)) are obtained for both the 

solution and gradient variables from the test cases in 1D and 2D regular grids.   Spectral accuracy 

of the solution and gradient variables are confirmed from all test cases of using the uniform grids in 

2D.  

1. INTRODUCTION 

Ever since the first introduction of the discontinuous Galerkin (DG) method for the steady 

solution of neutron transport by Reed and Hill in 1973[2] at Los Alamos National Laboratory, 

the method has been gaining tremendous amount of popularity and becomes a candidate for 

the next generation high-order numerical method.  In early stage of the research, such effort 

was leaded by the frontiers, such as Cockburn and Shu[3-6] and their collaborators[7] and 

followed by others wider applications[8-13].  The popularity of the DG method is mostly 

attributed to its hybrid nature of combining the standard Galerkin finite element within the 

interior of the element for high-order accuracy and the finite volume with strict conservative 

property across its neighboring elements.  The combination of such ideas brought the DG 

method an arbitrarily high-order solution on unstructured grids in a stable manner.  In 

addition to the superior accuracy, the method enjoys flexibility as well.  Because of the 

relaxed continuity requirement across the element interface, many advanced features can be 

incorporated into the DG framework with less complexity, such as using different polynomial 

approximation from element to element, and/or dealing with the hanging nodes from mesh 

refinements.  In that sense, the DG method can be considered as the frontier among various 
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kinds of continuously evolving numerical methods for PDE, especially for the hyperbolic type 

conservation laws. 

Like all numerical methods, the DG method is not free of disadvantages.  Two distinctive 

huddles of the DG method from a wider spread than it would be, are first due to the extra 

degree of freedom compared to the continuous Galerkin finite element method, and second 

the issues of dealing with the elliptic PDE’s.   The first issue of the extra memory overhead 

is certainly be a concern for a relatively low-order solutions however once a higher-order 

solution is being sought, such as 𝑝 > 𝑛𝑑𝑖𝑚 where 𝑝 is the degree of the polynomial and 

𝑛𝑑𝑖𝑚 the number of spatial dimensions, relative overhead diminishes[14, 15].  In fact, for a 

very high-order method is employed, such as the spectral element method, the memory 

overhead penalty quickly approaches comparable to the continuous counterpart. 

Application of the DG method towards the elliptic or parabolic problem, which is a 

prerequisite for solving more challenging problems such as Navier-Stokes equations, is much 

less obvious compared to the hyperbolic type equations, and it has been an active research 

topic.  A first comprehensive report for the elliptic problem was presented by Arnold et al.[16, 

17].  Among others, a few representative method for solving elliptic problem would be the 

local discontinuous Galerkin method[18], compact discontinuous Galerkin method[19], 

symmetric interior penalty method[20], and the BR2 method proposed in for solving Navier-

Stokes equations[21, 22]. 

 Recently, Nishikawa[1] proposed a novel idea of reformulating the elliptic/parabolic 

equation into a set of first order hyperbolic system with pseudo-time evolution.  This idea 

may reminds ones the aforementioned DG methods[18, 19, 21, 22] because of the introduction 

of the additional auxiliary variables for the solution gradients, or fluxes.  The idea is, 

however, fundamentally different in the sense that the hyperbolic formulation starts at the very 

first of the PDE level and even before the derivation of the weak form or any spatial 

discretization. Solving the elliptic problem in the hyperbolized form, various kinds of 

numerical schemes well developed for the hyperbolic PDE can be utilized. The expected 

benefits of this approach would be, for example, the stable and accurate high-order solutions, 

efficient implicit time-marching, equal order accuracy of auxiliary gradient variables, slowing 

growing condition number of the discretized system, and so on. Additional difference of the 

hyperbolic method is that it does not involve any mesh size dependent parameter, rather it just 

utilizes a universal relaxation length scale Lr, or time scale Tr, for the fast approach to the 

steady state solution in pseudo-time.  This makes the formulation being general and free of 

ℎ -dependent tuning parameters, which would be cumbersome for the users to check its 

sensitivity on the solution. 

Since the first introduction of the hyperbolic method, the idea have been applied to various 

problems including pure diffusion problems[1, 23], convection-diffusion problems[24], and 

also Navier-Stokes problems[25, 26] mostly in cell-vertex finite volume methods. High-order 

(>2nd) solution was also attempted in cell-vertex finite volume method[1, 23, 24, 25, 26], 

cell-centered finite volume method[27], and residual-distribution method[28], but has not 

been extended to a DG method[29] until recently, the reconstructed discontinuous Galerkin 

(rDG) method[30-32] for steady and unsteady convection-diffusion equations. 

In this paper, we present a very high-order spectral DG method for solving the Poisson 

problem via. hyperbolic formulation. This is based on the collocation types spectral element 
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method[14, 33] inside of element within the DG framework, i.e. being called as discontinuous 

Galerkin spectral element method (DGSEM)[34-37].   Since the first introduction of the 

method by Kopriva and his collaborators[38], the method applied to various problems, 

including Navier-Stokes equations[38-40] using quadrilaterals and hexahedrons with efficient 

tensor-product basis function mostly driven by explicit time-stepping schemes.  Here, we 

like to present a fully implicit scheme in pseudo-time for solving the hyperbolically re-

formulated Poisson equation within the DGSEM framework, aiming the designed spectral 

accuracy for both the solution and gradient variables. 

The paper is organized in the following contents.  In section 2, the hyperbolic formulation 

of the original Poisson problem in presented in PDE level.  In the following section 3, the 

weak form is derived from the first order hyperbolic system, and DGSEM discretization is 

explained. In the section 4, two types of test results are presented.  First, 1D test cases were 

presented with emphasis on the implicit boundary condition application technique.  

Secondly the problem was extended to 2D with regular Uniform quadrilateral grids. For both 

cases, optimal order of accuracy and the spectral accuracy were confirmed for both the 

solution and gradient variables. An interesting observation of matrix conditioning is also 

reported. The findings are summarized in section 5 and conclusions are made. 

 

2. HYPERBOLIC FORMULATION OF DIFFUSION EQUATION 

 

The governing equation for the current study is a Poisson equation in two dimensional 

space as follows,  
−∇ ∙ (υ∇u) = 𝑓 𝑖𝑛 Ω

u = 𝑔𝐷 𝑜𝑛 𝜕Ω
  

where u is the solution and υ is the diffusion coefficient,  𝑓 is the solution independent 

source, and 𝑔D is the solution prescribed on the Dirichlet type boundary.  By the idea of 

Nishikawa[1], auxiliary variables representing the solution gradients are introduced, and the 

original Poisson equation was transformed into a system of three coupled first-order 

hyperbolic system (FOHS), as follows 

{
 
 

 
 
𝜕𝑢

𝜕𝜏
= υ(

𝜕𝑝

𝜕𝑥
+
𝜕𝑞

𝜕𝑦
) + 𝑓

𝜕𝑝

𝜕𝜏
=

1

𝑇𝑟
(
𝜕𝑢

𝜕𝑥
− 𝑝)

𝜕𝑞

𝜕𝜏
=

1

𝑇𝑟
(
𝜕𝑢

𝜕𝑦
− 𝑞)

𝑖𝑛 Ω

u = 𝑔𝐷 𝑜𝑛 𝜕Ω

.  

Here, τ is the artificial time to reach the steady state, 𝑇𝑟 is the parameter called relaxation 

time, which is to be chosen for accelerated convergence to the steady state in the artificial 

time[23], and (𝑝, 𝑞) = (
𝜕𝑢

𝜕𝑥
,
𝜕𝑢

𝜕𝑦
) are the auxiliary variables representing solution gradients 

introduced to make the original system to be first order. It is obvious that when the solution 

reaches the steady state at pseudo-time τ, the steady-state solution recovers the solution of the 

original Poisson equation in the steady state. 

If the unsteady solution is necessary, certainly a time-accurate formulation of the first order 

system can be constructed by, for example, using a dual time-stepping formulation. However, 

our emphasis is on steady state solution which is also the solution for the original Poisson 
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problem. 

The system of equations can be written in a differential vector form as follows, 
𝜕

𝜕𝜏
𝑼+ ∇ ∙ 𝑭(𝑼) = 𝐒(𝑼) + 𝒇   

where 𝑼 is the solution vector, 𝑭(𝑼) contains the flux vector along all spatial direction, 

and 𝐒(𝑼) is the source term depending on the solution, and 𝒇 is the forcing term of the 

original Poisson problem.  Each of the vectors can be defined in 2D as follows, 

𝑼 = {

𝑢
𝑝
𝑞
}, 𝑭 = 𝐹𝒊 + 𝐺𝒋 = {

−𝜈𝑝

−
𝑢

𝑇𝑟

0

} 𝒊 + {

−𝜈𝑞
0

−
𝑢

𝑇𝑟

} 𝒋,  𝑺 = {

0

−
𝑝

𝑇𝑟

−
𝑞

𝑇𝑟

},  𝒇 = {
𝑓
0
0
}   

The hyperbolicity of the above system can be easily confirmed as follows. That differential 

form of the system can be written in an integral form for an arbitrarily closed domain Ω and 

its boundary ∂Ω as follows, 
𝑑

𝑑𝜏
∫ 𝑼𝑑𝑉
Ω

+ ∮ (𝑭 ∙ 𝒏)𝑑𝑆
𝜕Ω

= ∫ 𝑺𝑑𝑉
Ω

+ ∫ 𝒇𝑑𝑉
Ω

,   

where the integrand of the second term is the flux term of the hyperbolic formulation, which 

is defined as 

(𝑭 ∙ 𝒏) = (𝐹𝒊 + 𝐺𝒋) ∙ (𝑛𝑥𝒊 + 𝑛𝑦𝒋) 

where (𝑛𝑥, 𝑛𝑦) is the outward unit normal vector to the boundary 𝜕Ω, and i and j are unit 

vectors along x and y coordinate directions.  Based on that definition of flux, the flux 

Jacobian is defined as follows, 

𝐽 =
𝜕

𝜕𝑼
(𝑭 ∙ 𝒏) =

𝜕

𝜕𝑼
{

−𝜈(𝑝𝑛𝑥 + 𝑞𝑛𝑦)

−𝑢𝑛𝑥/𝑇𝑟
−𝑢𝑛𝑦/𝑇𝑟

} = [

0 −𝜈𝑛𝑥 −𝜈𝑛𝑦
−𝑛𝑥/𝑇𝑟 0 0
−𝑛𝑦/𝑇𝑟 0 0

]   

whose eigenvalues are found as follows, 

𝜆1 = −√𝜈/𝑇𝑟, 𝜆2 = √𝜈/𝑇𝑟, 𝜆3 = 0   

Indeed, all is real and distinct, and results in truly hyperbolic system inherited from the 

original Poisson equation.  Note that the first order hyperbolic system(FOHS) now includes 

a free parameter 𝑇𝑟  to be determined prior to the actual solution.  By the analysis of 

Nishikawa[23], the following time scale 𝑇𝑟 = 𝐿𝑟
2 𝜈⁄  and length scale 𝐿𝑟 = 1 2𝜋⁄  are used 

for the acceleration to the steady state in pseudo-time, which is the ultimate solution.  Note 

that this parameter does not depends on a specific discretization methods or mesh size, and 

this makes the FOHS to be a general system substituting the original elliptic equation and 

being ready for various numerical methods for PDE’s. 

 

3. DISCONTINUOUS GALERKIN SPECTRAL ELEMENT METHOD FOR FIRST ORDER HYPERBOLIC 

FORMULATION OF POISSON PROBLEM 

 

In this section the DGSEM formulation of the FOHS is presented and some implementation 

issues are discussed with focus on memory requirement and sparsity patterns of global 

stiffness matrix. 
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3.1. DGSEM formulation of the hyperbolic diffusion problem. The starting point of the 

discontinuous Galerkin method would be the derivation of the weak from the strong form, the 

FOHS. We assume that the original domain Ω is decomposed into a collection of finite number 

of non-overlapping subdomains such that 

Ω ≅ Ωℎ = ⋃ Ω𝑒
𝑛𝑒𝑙
𝑒=1 ,   

Where 𝑛𝑒𝑙 is total number of elements, and Ω𝑒 is the 𝑒𝑡ℎ sub-domain occupied by the 

element. Consider the following broken Sobolev space 𝓥𝒉
𝒑

, 

𝓥𝒉
𝒑
∶= {𝓋ℎ ∈ [𝐿

2(Ωℎ)]
𝑘 : 𝓋ℎ|Ω𝐼 ∈ [𝒬𝑝

𝑘] ∀Ω𝑒 ∈ Ωℎ},    

which is composed of discontinuous 𝑘 dimensional vector polynomials of degree 𝑝, and 

𝒬𝑝 is the set of polynomials of degree ≤ 𝑝.   Multiplying a test function 𝑽ℎ to the strong 

form and integrating over the domain Ω𝑒 followed by the integration by parts results in the 

following weak form: find  𝑼ℎ ∈  𝓥𝒉
𝒑
 such that 

𝑑

𝑑𝜏
∫ 𝑽ℎ

𝑇𝑼ℎ𝑑ΩΩ𝑒
− ∫ 𝛁𝑽ℎ

𝑇 ∙ 𝑭(𝑼ℎ)𝑑ΩΩ𝑒
+ ∮ 𝑽ℎ

𝑇𝓕(𝑼ℎ
−, 𝑼ℎ

+) ∙ 𝒏𝑑Γ
𝜕Ω𝑒

=

∫ 𝑽ℎ
𝑇𝑺(𝑼ℎ)𝑑ΩΩ𝑒

+ ∫ 𝑽ℎ
𝑇𝒇𝑑Ω

Ω𝑒
  ∀ 𝑽ℎ ∈  𝒱ℎ

𝑝
.    

Note that due to the allowed solution discontinuity between the interior solution 𝑼ℎ
− and 

the exterior 𝑼ℎ
+ across the element interface, the surface integral term appears and hence a 

consistent and stable numerical flux has to be provided.   For actual construction of the trial 

and test functions, the collocation type nodal basis functions are utilized.  By locating the 

Lagrange basis functions at the Gauss-Legendre quadrature points along the reference 

coordinate direction ξ ∈ [−1,1], a set of discretely orthogonal basis functions with respect to 

the chosen quadrature rule are constructed as follows 

ℓ𝑖(𝜉) = ∏
(𝜉−𝜉𝑗)

(𝜉𝑖−𝜉𝑗)

𝑁
𝑗=1
𝑗≠𝑖

, 𝑖 = 1,⋯ ,𝑁.    

Note that 𝑁  is number of basis function along each coordinate direction and = 𝓅 + 1 , 

where 𝓅  is the degree of polynomial.   The 𝑖𝑡ℎ basis function located at 𝜉𝑖  has 

interpolation property, i.e. ℓ𝑖(𝜉𝑗) = 𝛿𝑖𝑗  for 𝑖, 𝑗 = 1,⋯ ,𝑁.  Hence this method is called as 

discontinuous Galerkin(DG) across elements and spectral element method(SEM) within each 

element[33-37]. 

Once the basis in 1D was constructed, by using quadrilateral elements in 2D, or 

hexahedrons in 3D, those in multi-dimensions can be simply constructed by the tensor product 

between each reference coordinate directions.  For example in 2D, the basis functions are 

constructed by the tensor-product of the discretely orthogonal Lagrange polynomials as 

follows 

𝜓𝐼(𝑖,𝑗) = ℓ𝑖(𝜉)ℓ𝑗(𝜂).     

By using the local index map of 𝑖𝑑(𝑖, 𝑗) = 𝑁 × (𝑗 − 1) + 𝑖, the 2D basis function can be 

listed in a row vector as follows, 

𝝍 = [𝜓𝑖𝑑=1 ⋯ 𝜓𝑖𝑑=𝑁2]     
The solution points are collocated at the quadrature points are displayed in Fig.1 and whose 

corresponding shape functions are displayed in Fig.2.   The solution points are marked by 

red-filled markers and flux-points by hollow markers, whose sizes are scaled by their weights 

of the quadrature rule, i.e. the bigger weight the larger point. 
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FIGURE 1. Solution and flux point arrangement on the reference domain of a 2D quadrilateral 

element (𝑁 = 4,𝓅 = 3).  Red squares denote the solution point and white hollow squares 

the location for the flux computation.  All markers scaled by relative quadrature weights. 
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FIGURE 2. Basis functions for 𝑁 = 4 within a reference element.  Each interpolate a unit 

value at the quadrature point. 

But the virtue of the flexibility of the DG method, the polynomial order can be different 

from element to element and also from variable to variable.  For the simplicity of the 

implementation, all element and solution variables are approximation by the same pre-

determined solution order at the start of each test case.  Once the polynomial orders, or the 

basis functions are constructed, the approximated solution within an element can be expressed 

as follows 

𝑼ℎ = 𝚿𝒖ℎ = [𝑰𝟑×𝟑⨂𝝍] {

𝒖
𝒑
𝒒
},     

where 𝑰𝟑×𝟑  is the 3 × 3  identity matrix and ⨂  is the Kronecker product.  Since the 

current number of variables for the FOHS is three (one solution and two gradients), the 

number of unknown coefficients for each element is 3𝑁2 as follows 

𝒖 = [𝑢1 ⋯ 𝑢𝑁2]𝑇

𝒑 = [𝑝1 ⋯ 𝑝𝑁2]𝑇

𝒒 = [𝑞1 ⋯ 𝑞𝑁2]𝑇
.    

By following Galerkin’s idea, the test function is also chosen to be the same as the trial 

functions of the solution approximation and can be expressed as follows  

𝑽ℎ = 𝚿 = [𝑰𝟑×𝟑⨂𝝍]    
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Once the solution and test functions are approximated by the set of basis polynomials, the 

weak form for a sub-domain Ω𝑒, i.e. the 𝐿2-orthogonal projection of the residual on the test 

function space can be expressed as follows, 

∫ 𝚿𝑻𝚿𝑑Ω
Ω𝑒

𝑑

𝑑𝜏
𝒖ℎ − ∫ (𝛁𝚿𝑻) ∙ 𝑭(𝑼ℎ)𝑑ΩΩ𝑒

+ ∮ 𝚿𝑻(𝓕(𝑼ℎ
−, 𝑼ℎ

+) ∙ 𝒏)𝑑Γ
𝜕Ω𝑒

=

∫ 𝚿𝑻𝑺(𝑼ℎ)𝑑ΩΩ𝑒
+ ∫ 𝚿𝑻𝒇𝑑Ω

Ω𝑒
,    

Since the continuity requirement of the solution at the element interface is relaxed to be 

discontinuous, the solution jump is inevitable and this has to be treated by the introduction of 

a unique numerical flux function 𝔽 as follows 

∫ 𝚿𝑻𝚿𝑑Ω
Ω𝑒

𝑑

𝑑𝜏
𝒖ℎ − ∫ (𝛁𝚿𝑻) ∙ 𝓕(𝑼ℎ)𝑑ΩΩ𝑒

+ ∮ 𝚿𝑻 (𝔽(𝑼ℎ
−, 𝑼ℎ

+; 𝒏))𝑑Γ
𝜕Ω𝑒

=

∫ 𝚿𝑻𝑺𝒖(𝑼ℎ)𝑑ΩΩ𝑒
+ ∫ 𝚿𝑻𝒇𝑑Ω

Ω𝑒
.   

Note that the flux function employed here is based on the standard upwind flux which is 

also used in previous studies[24, 27] and defined as follows, 

𝔽(𝑼ℎ
−, 𝑼ℎ

+; 𝒏) =
𝟏

𝟐
(𝑭(𝑼ℎ

−; 𝒏) + 𝑭(𝑼ℎ
+; 𝒏)) −

𝟏

𝟐
|𝑨|(𝑼ℎ

+ −𝑼ℎ
−).    

Since this flux function couples the particular element of interest and only its immediate 

neighbors sharing faces, i.e. von Neumann neighbors, the current DG method results in indeed 

a compact scheme.    By considering a particular element Ω𝐼, the actual implementation of 

the weak form including the interface flux term can be further clarified as follows, 

𝐌
𝑑

𝑑𝜏
𝒖𝐼 − 𝐆𝒖𝐼 + ∑ [∫ 𝚿𝑻(𝝏𝔽 𝝏𝑼ℎ

−⁄ )𝚿𝑑Γ
𝜕Ω𝐼,𝐽

𝒖𝐼 + ∫ 𝚿𝑻(𝝏𝔽 𝝏𝑼ℎ
+⁄ )𝚿𝑑Γ

𝜕Ω𝐼,𝐽
𝒖𝐽]

𝑛𝑒𝑖
𝐽=1 −

𝐒𝐮𝒖𝐼 = 𝒇𝐼,     

where 𝒖𝐼 and 𝒖𝐽 is the unknown coefficients vectors at the cell Ω𝐼 and its neighbor Ω𝐽 

respectively, and 𝜕Ω𝐼,𝐽  refers to interface of 𝜕Ω𝐼 ∩ 𝜕Ω𝐽 .  Each coefficient matrices 

evaluated by utilizing the same quadrature rule of 𝑁  Gauss-Legendre quadrature points 

along each coordinate direction, which results in exact integration of polynomials degree up 

to 2𝑁 − 1 = 2𝓅 + 1.  This quadrature rule will result in exact mass matrix for constant and 

linear geometric mappings.  There may be slight mass lumping induced error, if a bi-linear 

or higher-order geometric mapping is used.  However in order to keep the simplicity of the 

implementation, the same quadrature rule was employed for all test cases, which still results 

in spectral accuracy for all cases. 

By the virtue of the orthogonality of the basis, the mass matrix can be conveniently 

evaluated as follows 

𝐌 = ∫ 𝚿𝑻𝚿𝑑Ω
Ω𝑒

= 𝑰𝟑×𝟑⨂diag(𝜔𝑖𝜔𝑗),    

and the Galerkin volume integral term can be evaluated as follows,  

𝐆 = ∫ (𝛁𝚿𝑻) ∙ (𝝏𝑭 𝝏𝑼ℎ⁄ )𝚿𝑑Ω
Ω𝑒

= ∫ (𝝏𝚿𝑻 𝝏𝑥𝑘⁄ )(𝝏𝑭𝑘 𝝏𝑼ℎ⁄ )𝚿𝑑Ω
Ω𝑒

.    

Note that the sparsity pattern of flux Jacobian 𝝏𝑭𝑘 𝝏𝑼ℎ⁄ , defined as follows 

𝝏𝑭𝑘 𝝏𝑼ℎ⁄ = [

0 −𝜈𝑛1𝛿𝑘1 −𝜈𝑛2𝛿𝑘2
−𝑛1𝛿𝑘1 𝑇𝑟⁄ 0 0

−𝑛2𝛿𝑘2 𝑇𝑟⁄ 0 0
],    

is directly reflected to that of the diagonal block matrix which is be confirmed in the following 
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section.  

The next boundary integral of the flux term is the most important term of most of the DG 

methods.  The evaluation of the flux term produces coupling off-diagonal blocks between 

the element of interest and the immediate neighbor elements.  The stable, consistent, and 

compact upwind numerical flux was utilized like in previous finite volume method[27] and 

reconstructed discontinuous Galerkin methods[30, 32], as follows 

𝐌
𝑑

𝑑𝜏
𝒖𝐼 −𝐆𝒖𝐼 +∑

1

2
[∫ 𝚿𝑻(𝑱 + |𝑨|)𝚿𝑑Γ
𝜕Ω𝐼,𝐽

𝒖𝐼 + ∫ 𝚿𝑻(𝑱 − |𝑨|)𝚿𝑑Γ
𝜕Ω𝐼,𝐽

𝒖𝐽 ]
𝑛𝑒𝑖
𝐽=1 −

𝐒𝐮𝒖𝐼 = 𝒇𝐼 ,     

Again the sparsity pattern of the system matrix affected by the sparsity of the flux Jacobian 

𝑱 associated with a particular normal direction as follows, 

𝑱 = 𝝏𝑭 𝝏𝑼ℎ⁄ = [

0 −𝜈𝑛𝑥 −𝜈𝑛𝑦
−𝑛𝑥/𝑇𝑟 0 0
−𝑛𝑦/𝑇𝑟 0 0

],     

and its absolute Jacobian |𝑨| derived by the eigen-decomposition of 𝑱 as follows, 

|𝑨| = 𝑅|Λ|𝑅−1 =
𝜈

𝐿𝑟
[

1 0 0
0 𝑛𝑥

2 𝑛𝑥𝑛𝑦

0 𝑛𝑦𝑛𝑥 𝑛𝑦
2
].     

Note that the sparsity pattern of 𝑱 and |𝑨| are complementary.  Hence depending on the 

surface normal vector, the assembled system matrix would result in the coupling block matrix 

to be full.  Although the formulation is presented with time evolution term in pseudo-time 

τ , the temporal accuracy means no sense until it researches the steady state.  Unless the 

steady state solution is being sought by explicit time-marking scheme which is easy to be 

inefficient due to the restrictive timestep of high-order method, the unsteady terms can be 

neglected and the steady state solution was being sought by the implicit solution process, as 

follows  

−𝐆𝒖𝐼
ℎ − 𝐒𝐮𝒖𝐼

ℎ + ∑
1

2
[∫ 𝚿𝑻(𝑱 + |𝑨|)𝚿𝑑Γ
𝜕Ω𝐼,𝐽

𝒖𝐼
ℎ]𝑛𝑒𝑖

𝐽=1 + ∑
1

2
[∫ 𝚿𝑻(𝑱 − |𝑨|)𝚿𝑑Γ
𝜕Ω𝐼,𝐽

𝒖𝐽
ℎ]𝑛𝑒𝑖

𝐽=1 =

𝒇𝐼
ℎ    

Once the above equation is being assembled into the global system, it results in the global 

linear system whose solution is the steady state solution and gradients in pseudo-time.  A 

direct solution of the global linear system is sufficient for the steady state solution, because 

that is the ultimate solution of the original Poisson problem. 

 

 

4. RESULTS 

 

For the simplicity of the problem and explanation of the boundary condition, the first test 

case is presented in 1D, as follows 

−𝑢𝑥𝑥 = 𝑓 𝑖𝑛 𝑥 ∈ (0,1)
𝑢 = 𝑔𝐷 𝑜𝑛 𝑥 = 0,1

,      

where the source is given as 𝑓 = 𝜋2𝑠𝑖𝑛(𝜋𝑥)  and 𝑔𝐷 = 0  which results in the exact 

solution of u(𝑥) = 𝑠𝑖𝑛(𝜋𝑥) .  The original equation was reformulated into a set of 

hyperbolic PDE as follows, 
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FIGURE 3. Implicit boundary condition imposition using ghost element.  Ω𝑛 is the element 

on boundary and Ω𝑔ℎ𝑜𝑠𝑡 is the ghost element whose solution is constrained to be the mirror 

image of the boundary element.  𝑇Ω𝑛 and 𝑇Ω𝑔ℎ𝑜𝑠𝑡 are the geometric mappings from the 

reference domain to the boundary and ghost element in physical domain, respectively. 

 

The Dirichlet boundary conditions at the both ends are imposed in a weak sense through 

the flux computation procedure.  On the flux evaluation stage, solution state on both sides 

of the element interface is necessary, but for the element on boundary however is lack of 

counterpart element over the boundary.  This absent element is constructed by the ghost-

element idea as shown in Fig.3.  It is direct mirror image of the boundary element Ω𝑛 but 

its solution is constrained to be the shifted mirror image to that of the boundary element. In 

this sense, the boundary element acts like the master and the ghost behaves as a slave to the 

master. In order to achieve this idea, first a ghost element is constructed whose solution order 

and geometric quantity is same as the boundary cell it itself, then its solution is constrained to 

be the shifted anti-symmetric image of the solution whose average meets the prescribed 

Dirichlet condition, as follows 

                         
1

2
(𝑢Ω𝑛(𝜉) + 𝑢Ω𝑔ℎ𝑜𝑠𝑡(−𝜉)) = 𝑔𝐷,                  (4.1) 

where ξ ∈ [−1,1] is the coordinate direction in the reference domain, which is normal to the 

boundary in physical domain.   Note that the boundary condition is never to be assigned 

strongly, rather it is imposed by weakly through the flux computation procedure. The current 

imposition of the boundary condition is a high-order extension of a implicit boundary 

condition imposition which described in finite volume method[41]. 

Hyperbolic system is also being solved for the gradient variable, 𝑝, and a proper boundary 

condition is needed for it as well.  Same ghost strategy is utilized for the gradient variables, 

but with Neumann type boundary condition as follows 
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𝑝Ω𝑛(𝜉) = 𝑝Ω𝑔ℎ𝑜𝑠𝑡(−𝜉).     

Note that the above condition is directly derivable by differentiating the Eq. (4.1) along the 

boundary normal direction, ξ.  This condition implies that the solution curvature to be zero 

in Dirichlet boundary, i.e. being the inflection point if the solution is extended towards the 

ghost cell.  For multi-dimensional case, the same strategy applies for additional gradient 

variables along the boundary normal direction, which may be either ξ or η of the reference 

coordinate depending on the element orientation in the physical domain. 

Now the above FOHS is discretized by the DGSEM and solved for the solution (𝑢, 𝑝).   

A sample solution of this 1D problem is displayed in Fig. 4 for two different orders of 

solution approximation.  As shown in the figure, the 𝓅 = 2  solution shows noticeable 

discrepancy not only inside of the domain but also on the boundary value, i.e. 𝑢 = 0 on 

both ends, but such discrepancy disappears at least visually for higher order solution of 𝓅 =
4. 

  

FIGURE 4. Sample solution of the 1D test problem using 𝑛𝑒𝑙 = 2.  For 𝓅 = 2, discrepancy 

between the exact is noticeable within the domain and also on the boundary.  For higher 

order case of 𝓅 = 4, numerical solution almost interpolate the exact solution even on the 

boundary. 

 

The results from the 𝒽  and 𝓅  refinement are displayed in the following Fig. 5.  As 

shown in the figure, the expected order of accuracy is obtained for the degree of polynomials 

of 𝓅 = 2,⋯ ,9   results in solution orders of above 𝑁 = 3,⋯ ,10  or above the order of 

𝒪(𝒽𝑝+1) , which is the expected optimal order.  It should also be emphasized that such 

optimal order of accuracy is not only for the solution variable but also for the gradient variable, 

which is one of many advantages of the hyperbolic formulation. 

For N > 10 , the polynomial order of accuracy is difficult to measure because a mesh 

refinement immediately results in the near machine zero error.  Instead, the spectral 

convergence of the error is display by fixing the element number 𝑛𝑒𝑙 = 2 but increasing the 

polynomial orders.  As shown in Fig. 6 displayed in semi-log scale error with respect to the 

solution order, the spectral convergence is clearly observable not only for the solution variable 
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but also for the gradient variable. 

The summary of the verification study is presented in Table 1 and 2.  It is clear that the 

error is decaying in super-convergent manner, i.e. 𝒪(𝒽𝑝+1+𝛼) with α > 0 for all orders of 

𝑁 = 3,⋯ ,10.  For example, the polynomial degree 𝓅 = 9 corresponding to the 𝑁 = 10 

case results in the error decaying in the order of 𝒪(𝒽10.35)  for the solution variable and 

𝒪(𝒽10.45)  for the gradient variables.  Such super-convergence is observed for all orders of 

approximation for both the solution and the gradient variable simultaneously. 

 

 

TABLE 1. The L2 error of the solution for different orders of solution approximations.  The 

rate of convergence was estimated by using least-squares fit. 

𝑁 = 𝓅 + 1 𝑛𝑒𝑙 = 2 𝑛𝑒𝑙 = 3 𝑛𝑒𝑙 = 4 𝑛𝑒𝑙 = 6 𝑛𝑒𝑙 = 8 Rate 

3 2.18e-03 − 1.97e-04 4.91e-05 1.83e-05 3.44 

4 1.92e-04 − 9.32e-06 1.56e-06 4.39e-07 4.38 

5 1.48e-05 − 3.63e-07 4.06e-08 8.53e-09 5.37 

6 9.72e-07 7.45e-08 1.19e-08 8.85e-10 − 6.37 

7 5.50e-08 2.80e-09 3.34e-10 1.65e-11 − 7.38 

8 2.72e-09 9.22e-11 8.24e-12 2.70e-13 − 8.39 

9 1.20e-10 2.69e-12 1.80e-13 4.18e-15 − 9.34 

10 4.76e-12 7.09e-14 3.64e-15 4.37e-16 − 10.35 

 

 

TABLE 2. The L2 error of the gradient, i.e. 𝑝 = 𝜕𝑢 𝜕𝑥⁄  for different orders of solution 

approximations.  The rate of convergence was estimated by using least-squares fit.  

𝑁 = 𝓅 + 1 𝑛𝑒𝑙 = 2 𝑛𝑒𝑙 = 3 𝑛𝑒𝑙 = 4 𝑛𝑒𝑙 = 6 𝑛𝑒𝑙 = 8 Rate 

3 2.60e-02 − 2.55e-03 6.39e-04 2.37e-04 3.38 

4 2.61e-03 − 1.24e-04 2.06e-05 5.72e-06 4.41 

5 2.07e-04 − 4.88e-06 5.35e-07 1.11e-07 5.43 

6 1.37e-05 1.01e-06 1.59e-07 1.16e-08 − 6.43 

7 7.72e-07 3.80e-08 4.46e-09 2.16e-10 − 7.44 

8 3.80e-08 1.24e-09 1.09e-10 3.53e-12 − 8.45 

9 1.66e-09 3.62e-11 2.38e-12 5.09e-14 − 9.46 

10 6.56e-11 9.49e-13 4.70e-14 4.92e-15 − 10.45 
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FIGURE 5. Error convergence by elevating the solution orders.  Notice that for very high 

orders, e.g. 𝑁 > 10 indicated by dashed lines, initial mesh refinement results in absolute 

errors near the machine zero. 
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FIGURE 6. Spectral convergence of the solution and a gradient variable.  Only 𝑛𝑒𝑙 = 2 was 

used for all orders of solution approximation. 

 

4.2 Accuracy in 2D and conditioning of stiffness matrix. In this section Poisson equation 

in 2D is test as follows, 

−(𝑢𝑥𝑥 + 𝑢𝑦𝑦) = 𝑓 𝑖𝑛 𝑥, 𝑦 ∈ (0,1)2

𝑢 = 𝑔𝐷 𝑜𝑛 𝑥, 𝑦 = 0,1
,   

where the source is given as f = 𝜋2𝑠𝑖𝑛(𝜋𝑥)𝑠𝑖𝑛(𝜋𝑦)  and 𝑔𝐷 = 0  which results in the 

exact solution of u(𝑥) = 𝑠𝑖𝑛(𝜋𝑥)𝑠𝑖𝑛(𝜋𝑦) .  As a direct extension from the 1D case, a 

regular Cartesian grid is considered. Sample solutions of 𝑛𝑒𝑙 = 2 × 2 elements with 𝑁 =
𝓅 + 1 = 3 and 5 are displayed in Fig. 7.  As solution order increases, solution continuity 

across the element interfaces and also the Dirichlet boundary condition, u = 𝑔𝐷 , on the 

domain boundaries are improves, and this can be confirmed in the corresponding contour lines 

as well. 
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FIGURE 7. Sample solution of 2D test case, with 𝑛𝑒𝑙 = 2 × 2.  Left column is for 𝓅 = 2 

solution, and right for 𝓅 = 4.  By increasing the solution order, contour becomes smoother 

across the elements and also near the boundaries. 

 

The 𝒽 and 𝓅 refinement study is presented in Fig. 8.   As mesh refines, the expected 

polynomial order of accuracy is obtained, i.e. for degree 𝓅 solution approximations, almost 

𝑁 = 𝓅 + 1  order of accuracy is obtained.   This optimal behavior is not only for the 

solution variables but also for the gradient variables, i.e. 𝑝 and 𝑞.  Due to the symmetry of 

the solution with respect to the 𝑦 = 𝑥 , convergence histories of 𝑝  and 𝑞  towards 

𝜕𝑢 𝜕𝑥⁄  and 𝜕𝑢 𝜕𝑦⁄  are essentially identical, hence only the history of the gradient variable, 

𝑝, is displayed. 
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FIGURE 8. Convergence of the error for different solution orders.  Optimal order of accuracy 

was obtained not only for the solution variable but also the gradient variables.  The second 

gradient variable 𝑞 = 𝜕𝑢 𝜕𝑦⁄  was omitted because it shows essential identical convergence 

history as the first. 

For very high order cases, e.g. 𝑁 = 𝓅 + 1 = 11, initial refinement results in the absolute 

error near the machine zero order and this makes the measuring the polynomial order difficult.   
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Spectral convergence of the error is also confirmed in Fig. 9 where the error is displayed in 

log-linear scale with respect to the solution order 𝑁.  Like in the previous 1D results, the 

error converges exponentially not only for the solution variables but also the gradient 

variables.  Note that the error of gradient variable of 𝑝 is essentially identical to that of 𝑞. 

 

TABLE 3. The L2 error of the solution variable for different orders of solution approximations.  

The rate of convergence was estimated by using least-squares fit. 

𝑁 = 𝓅 + 1 √𝑛𝑒𝑙 = 2 √𝑛𝑒𝑙 = 3 √𝑛𝑒𝑙 = 4 √𝑛𝑒𝑙 = 6 √𝑛𝑒𝑙 = 8 Rate 

3 3.82e-03 − 5.31e-04 1.65e-04 7.18e-05 2.86 

4 3.61e-04 − 2.55e-05 5.32e-06 1.73e-06 3.85 

5 2.82e-05 − 1.00e-06 1.38e-07 3.37e-08 4.85 

6 1.87e-06 1.78e-07 3.30e-08 3.02e-09 − 5.85 

7 1.06e-07 6.72e-09 9.32e-10 5.66e-11 − 6.86 

8 5.30e-09 2.21e-10 2.29e-11 9.29e-13 − 7.87 

9 2.34e-10 6.50e-12 5.04e-13 1.43e-14 − 8.83 

10 9.32e-12 1.71e-13 1.01e-14 − − 9.84 

TABLE 4. The L2 error of the first gradient variable, i.e. 𝑝 = 𝜕𝑢 𝜕𝑥⁄  for different orders of 

solution approximations.  The error of the second gradient variable 𝑞 = 𝜕𝑢 𝜕𝑦⁄ , which is 

essentially identical to the first, was omitted.  The rate of convergence was estimated by 

using least-squares fit. 

𝑁 = 𝓅 + 1 √𝑛𝑒𝑙 = 2 √𝑛𝑒𝑙 = 3 √𝑛𝑒𝑙 = 4 √𝑛𝑒𝑙 = 6 √𝑛𝑒𝑙 = 8 Rate 

3 3.69e-02 − 5.19e-03 1.60e-03 6.89e-04 2.87 

4 3.73e-03 − 2.55e-04 5.18e-05 1.66e-05 3.90 

5 2.98e-04 − 1.00e-05 1.34e-06 3.23e-07 4.92 

6 1.97e-05 1.80e-06 3.26e-07 2.92e-08 − 5.93 

7 1.11e-06 6.75e-08 9.16e-09 5.44e-10 − 6.94 

8 5.50e-08 2.21e-09 2.24e-10 8.89e-12 − 7.95 

9 2.40e-09 6.43e-11 4.89e-12 1.30e-13 − 8.95 

10 9.49e-11 1.68e-12 9.75e-14 − − 9.93 
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FIGURE 9. Spectral convergence of the solution and gradient variables.  Only 𝒏𝒆𝒍 = 𝟐 × 𝟐 

was employed for all orders of solution 

 

Another very interesting fact about the current method is about its conditioning of the global 

stiffness matrix.  It is well known that, for grids of a certain degree of uniformity, the spectral 

condition number of the system grows in the order of 𝒪(𝒽−2)  where 𝒽  is the element 

length scale.  In other words, if mesh refines by a half along each direction, then the 

condition number of the global stiffness matrix grows quadruple, which is almost universal 

for all discretization methods for Poisson problems.  Surprisingly, the conditioning number 

of the current DGSEM hyperbolic Poisson problem grows only linearly, i.e. in the order of 

𝒪(𝒽−1).  This could be an indication that the current DGSEM can be an efficient method in 

term of CPU time as well, because the well-conditioned linear system shows faster 

convergence by iterative linear solvers, especially for large scale problems.  Such 

phenomenon may be attributed to the fact that our problem is truly first order hyperbolic 

system although it was originated from the second order elliptic problem.  Note that a similar 

characteristic, related to the spectral radius of the stiffness matrix, is already observed in the 

previous studies in explicit time marching schemes[25], and it was further confirmed in 

implicit formulation here.     
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The linear growth of the condition number can be demonstrated by scaling the original 

matrix condition number,  𝜅(𝐴), as follows 

 

   𝜅∗(𝐴) = 𝜅(𝐴) × (
𝒽

𝓅2
)                       (4.2) 

 

Where 𝜅∗(𝐴)  is the scaled condition number of global stiffness matrix 𝐴  and 𝒽 =

1 √𝑛𝑒𝑙⁄  is the element size in 2D Cartesian grids and 𝓅 is the degree of polynomial, i.e. 

𝑁 − 1.  As summarized in Table 5 and displayed in Fig. 10, once it is scaled the condition 

number is bounded by a constant even if the mesh is refined. Furthermore, if it is scaled by 

the square of the polynomial degree, the normalized condition number  𝜅∗  decreases 

monotonically as the solution order is elevated. 

 

TABLE 5. The condition number of the global stiffness matrix, 𝜅∗(𝐴), normalized by Eq.(4.2). 

Notice that the condition number is growing in the order of 𝒪(𝒽−1), rather than 𝒪(𝒽−2). 

𝑁 = 𝓅 + 1 √𝑛𝑒𝑙 = 2 √𝑛𝑒𝑙 = 3 √𝑛𝑒𝑙 = 4 √𝑛𝑒𝑙 = 5 √𝑛𝑒𝑙 = 6 √𝑛𝑒𝑙 = 8 

3 26.52 − 29.95 − 30.12 30.10 

4 18.29 − 20.85 − 21.15 21.23 

5 14.59 − 16.54 − 16.81 16.89 

6 12.22 13.38 13.75 − 14.00 − 

7 10.62 11.54 11.86 − 12.07 − 

8 9.43 10.19 10.46 − 10.64 − 

9 8.52 9.15 9.39 − 9.55 − 

10 7.79 8.34 8.55 8.64 − − 
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FIGURE 10. Normalized condition number by the element size 𝒽 and polynomial order 𝓅, as 

shown in Eq. (4.2).  Once it is normalized by 𝒽 𝓅2⁄ , the matrix conditioning number 

becomes actually bounded by a constant, which is inverse proportional to the solution order. 

 

 

 

5. CONCLUSIONS 

 

Discontinuous Galerkin spectral element method is presented for the elliptic PDE 

reformulated in the first order hyperbolic system. Optimal order of accuracy 𝒪(𝒽𝑝+1) is 

obtained with degree 𝓅  polynomial for both the solution and gradient variables. The 

expected spectral convergence was obtained for both the solution and gradient variables.  

The conditioning of the global stiffness matrix is compared.  Surprisingly but expectedly, 

the matrix condition number grows only linearly with 𝒪(𝒽−1) in contrast to  𝒪(𝒽−2) for 

conventional Poisson solvers, which sheds a light on the faster convergence of the iterative 

linear solvers. The proposed method is being extended to the convection-diffusion problems 
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and towards more challenging nonlinear problems, such as Navier-Stokes equations for 

incompressible flows, whose results are to be presented in our subsequent papers. As a 

conclusion, the DGSEM could be a very attractive method for solving the hyperbolized 

elliptic problems. 
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