Browse > Article
http://dx.doi.org/10.5322/JESI.2020.29.12.1261

Adsorption Characteristics of Ammonia-Nitrogen by Zeolitic Materials Synthesized from Jeju Scoria  

Lee, Chang-Han (Department of Environmental Administration, Catholic University of Pusan)
Hyun, Sung-Su (Research Institute of Health & Environment, Jeju Special Self-Governing Province)
Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University)
Publication Information
Journal of Environmental Science International / v.29, no.12, 2020 , pp. 1261-1274 More about this Journal
Abstract
The characteristics of ammonia-nitrogen (NH4+-N) adsorption by a zeolitic material synthesized from Jeju scoria using the fusion and hydrothermal method was studied. The synthetic zeolitic material (Z-SA) was identified as a Na-A zeolite by X-ray diffraction, X-ray fluorescence analysis and scanning electron microscopy images. The adsorption of NH4+-N using Jeju scoria and different types of zeolite such as the Z-SA, natural zeolite, and commercial pure zeolite (Na-A zeolite, Z-CS) was compared. The equilibrium of NH4+-N adsorption was reached within 30 min for Z-SA and Z-CS, and after 60 min for Jeju scoria and natural zeolite. The adsorption capacity of NH4+-N increased with approaching to neutral when pH was in the range of 3-7, but decreased above 7. The removal efficiency of NH4+-N increased with increasing Z-SA dosage, however, its adsorption capacity decreased. For initial NH4+-N concentrations of 10-200 mg/L at pH 7, the adsorption rate of NH4+-N was well described by the pseudo second-order kinetic model than the pseudo first-order kinetic model. The adsorption isotherm was well fitted by the Langmuir model. The maximum uptake of NH4+-N obtained from the Langmuir model decreased in the order of Z-CS (46.8 mg/g) > Z-SA (31.3 mg/g) > natural zeolite (5.6 mg/g) > Jeju scoria (0.2 mg/g).
Keywords
Scoria; Zeolitic material; Adsorption; Characteristics; Ammonia-nitrogen;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Beebe, D. A., Castle, J. W., Rodgers Jr, J. H., 2013, Treatment of ammonia in pilot-scale constructed wetland systems with clinoptilolite, J. Environ. Chem. Eng., 1(4), 1159-1165.   DOI
2 Chae, Y. G., 1988, Nitrate removal by ion exchange, PhD Thesis, Dongeui Univ., Busan, 1-176.
3 Choi, O. K., Lee, K., Dong, D., Lee, J., 2016, Recovery of nitrogen from high strength waste stream by using natural zeolite (Clinoptololite), J. Korean Soc. Water & Wastewater, 30(1), 105-111.   DOI
4 Cho, Y. W., 1999, Adsorption characteristics of Cheju scoria for the removal of heavy metals, MS Thesis, Cheju National University, Cheju, 1-67.
5 Ding, Y., Sartaj, M., 2015, Statistical analysis and optimization of ammonia removal from aqueous solution by zeolite using factorial design and response surface methodology, J. Environ. Chem. Eng., 3(2), 807-814.   DOI
6 Freundlich, H. M. F., 1906, Over the adsorption in solution, J. Phys. Chem., 57(1), 385-470.
7 Henmi, T., 1987, Increase in cation exchange capacity of coal fly ash by alkali treatment, Clay Sci., 6(6), 277-282.
8 Huo, H., Lin, H., Dong, Y., Cheng, H., Wang, H., Cao, L., 2012, Ammonia-nitrogen and phosphates sorption from simulated reclaimed waters by modified clinoptilolite, J. Hazard. Mater., 229-230(30), 292-297.   DOI
9 Ho, Y. S., McKay, G., 1999, Pseudo-second order model for sorption processes, Process Biochem., 34(5), 451-465.   DOI
10 Hollman, G. G., Steenbruggen, G., Janssen, J. M., 1999, A Two-step process for the synthesis of zeolites from coal fly ash, Fuel, 85(5-6), 657-663.   DOI
11 Hyun, S. S., 1999, Studies on the removal of heavy metal ions in wastewater using the zeolites synthesized from Cheju scoria, MS Thesis, Cheju National University, Cheju, 1-70.
12 Ikeda, T., Nagase, T., Hiyoshi, N., Oumi, Y., 2012, Crystal structure, characterization and thermal stability of NH4+-exchanged-LIT-type zeolite, Micro. Meso. Mater., 163(15), 42-50.   DOI
13 Jeon, B. E., Ahn, B. J., Chang, W., Kam, S. K., Lee, M. G., 2004, Zeolite conversion of Cheju Scoria, J. Ind. Eng. Chem., 10(4), 618-622.
14 Langmuir, I., 1918, The adsorption of gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 40(9), 1361-1403.   DOI
15 Kam, S. K., Hong, J. Y., Hu, C. G., Lee, M. G., 2003, Adsorption characteristics of Cd(II) and Cu(II) by zeolites synthesized from Hwangto, J. Environ. Sci., 12(7), 817-824.
16 Kam, S. K., Hyun, S. S., Lee, M. G., 2011, Removal of divalent heavy metal ions by Na-P1 synthesized from Jeju scoria, J. Environ. Sci., 20(10), 1337-1345.
17 Karadag, D., Koc, Y., Turan, M., Armagan, B., 2006, Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite, J. Hazard. Mater., 136(3), 604-609.   DOI
18 Karadag, D., Tok, S., Akgul, E., Turan, M., Ozturk, M., Demir, A., 2008, Ammonium removal from sanitary landfill leachate using natural Gordes clinopyololite, J. Hazard. Mater., 153(1-2), 60-66.   DOI
19 Lagergren, S., 1898, About the theory of so-called adsorption of soluble substances, Kunglia Svenska Vetenskapsa-kademiens Handlingar, 24(4), 1-39.
20 Lee, C. H., Kam, S. K., Lee, M. G., 2017, Removal characteristics of Sr ion by Na-A zeolite synthesized using coal fly ash generated from a thermal power plant, J. Environ. Sci. Interm., 26(3), 363-371.   DOI
21 Lee, C. H., Lee, M. G., 2018, Evaluation of exchange capacities of Ca2+ and Mg2+ ions by Na-A zeolite synthesized from coal fly ash, J. Environ. Sci. Intern. 27(11), 975-982.   DOI
22 Lee, C. H., Park, J. M., Lee, M. G., 2014, Adsorption characteristics of Sr(II) and Cs(I) ions by zeolite synthesized from coal fly ash, J. Environ. Sci. Intern., 23, 1987-1998.   DOI
23 Lee, M. G., Cheon, J. K., Kam, S. K., 2003, Heavy metal adsorption characteristics of zeolite synthesized from fly ash, J. Ind. Eng. Chem., 9(2), 174-180.
24 Moon, Y. T., Kim, T. S., 1995, Synthesis and physico-chemical characteristics of the zeolites from waste anthracite briquette ash and fly ash, Korean Soc. Soil Sci. Fert., 28(1), 11-21.
25 Lee, M. G., Park, J. W., Kam, S. K., Lee, C. H., 2018, Synthesis of Na-A zeolite from Jeju Island scoria using fusion/hydrothermal method, Chemosphere, 207, 203-208.   DOI
26 Lee, S. H., Ahn, B. J., Chang, W., Kam, S. K., Lee, M. G., 2005, Zeolitic conversion of Gochang Loess, J. Ind. Eng. Chem., 11(2), 297-302.
27 Lin, L., Lei, Z., Wang, L., Liu, X., Zhang, Y., Wan, C., Lee, D. J., Tay, J. H., 2013, Adsorption mechanisms of high-levels of ammonium onto natural and NaCl-modified zeolites, Sep. Purif. Technol., 103(15), 15-20.   DOI
28 Machado, N. R. C. F., Miotto, D. M. M., 2005, Synthesis of Na-A and -X zeolites from oil shale ash. Fuel 84(18), 2289-2294.   DOI
29 Marttinen, S. K., Kettunen, R. H., Sormunen, K. M., Soimasuo, R. M., Rintala, J. A., 2002, Screening of physico-chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates, Chemosphere, 46(6), 851-858.   DOI
30 Page, A. L., 1985, Methods of Soil Analysis (2nd ed.), Part 2, Chemical and Microbiological Properties. Am. Soc. Agron. Inc., Soil Soc. Am. Inc., Madison, Wisconsin, USA.
31 Park, J., Seo, Y., Rhu, S. H., Kim, S. D., 2017, Ammonia adsorption capacity of zeolite X with different cations, App. Chem. Eng., 28(3), 355-359.   DOI
32 Qui, W., Zheng, Y., 2009, Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash, Chem. Eng. J., 145(3), 483-488.   DOI
33 Tanaka, H., Fujii, A., 2009, Effect of stirring on the dissolution of coal fly ash and synthesis of pure form Na-A and -X zeolites by two step process, Adv. Powd. Tech., 20(5), 473-479.   DOI
34 Treacy, M. M. J., Higgins, J. B., 2001, Collection of simulated XRD powder patterns for zeolites, Elsevier, Amsterdam.
35 Walkley, A., Black, I. A., 1934, An Examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method, Soil Sci., 37(1), 29-38.   DOI
36 Wang, S., Peng, Y., 2010, Natural zeolites as effective adsorbents in water and wastewater treatment, Chem. Eng. J., 156(1), 11-24.   DOI
37 Wang, Y. F., Lin, F., Pang, W. Q., 2007, Ammonium exchange in aqueous solution using Chinese natural clinoptilolite and modified zeolite, J. Hazard. Mater., 142(1-2), 160-164.   DOI