Oxidative Transformation of 1-Naphthol Using Manganese Oxide

망간산화물을 이용한 1-Naphthol의 산화 제거 연구

  • Lim, Dong-Min (Department of Environmental Engineering, Seoul National University of Technology) ;
  • Kang, Ki-Hoon (Technology Research Institute, Daelim Industrial Co., Ltd.) ;
  • Shin, Hyun-Sang (Department of Environmental Engineering, Seoul National University of Technology)
  • 임동민 (서울산업대학교 환경공학과) ;
  • 강기훈 ((주)대림산업 기술연구소) ;
  • 신현상 (서울산업대학교 환경공학과)
  • Published : 2006.05.31

Abstract

In this study, removals of 1-naphthol by oxidative-coupling reaction using birnessite, one of natural Mn oxides present in soil, was investigated in various experimental conditions(reaction time, Mn oxide loadings, pH, etc). Removal efficiency of 1-naphthol by birnessite was high in all the experimental conditions, and UV-vis. and mass spectrometric analyses on the supernatant after reaction confirmed that the reaction products were oligomers formed by oxidative-coupling reaction. Pseudo-first order rate constants, f, for the oxidative transformation of 1-naphthol by birnessite was derived from the kinetic experiments under various amount of birnessite loadings, and using the observed pseudo-first order rate constants with respect to birnessite loadings, surface area-normalized specific rate constant, $k_{surf}$ was also determined to be $9.31{\times}10^{-4}(L/m^2{\cdot}min)$ for 1-naphthol. In addition, the oxidative transformation of 1-naphthol was found to be dependent on solution pH, and the pseudo-first order rate constants were increased from 0.129 at pH 10 to 0.187 at pH 4.

본 연구에서는 일반 토양 중에 존재하는 망간산화물의 하나인 버네사이트(birnessite)를 이용한 1-naphthol의 산화-공유결합 반응에 의한 제거 특성을 다양한 반응조건(반응시간, 버네사이트 주입량 및 pH 등)에서 회분식 실험을 통하여 조사하였다. 버네사이트에 의한 1-naphthol의 제거효율은 모든 반응조건에서 우수하였으며, 생성되는 반응산물은 1-naphthol의 산화-공유결합 반응에 의한 중합체임을 반응 후 상등액에 대한 UV-vis. 흡광 분석 및 질량분석기를 이용한 분자량 분석을 통해 확인하였다. 버네사이트 첨가량에 따른 1-naphthol의 산화 변환 실험 결과는 유사-일차 반응속도 식을 적용하여 반응 속도 상수, k를 구하였으며, 이 유사-일차 속도상수를 버네사이트의 비표면적으로 표준화하여 도출한 반응속도상수($k_{surf}$)는 $9.31{\times}10^{-4}(L/m^2{\cdot}min)$이었다. 또한, 버네사이트에 의한 1-naphthol의 산화 변환 효율은 수용액의 pH에 영향을 받았으며, pH가 10에서 4로 감소하면서 유사-일차 반응속도 상수는 $0.129min^{-1}$에서 $0.187min^{-1}$로 증가하였다.

Keywords

References

  1. IPCS environmental health criteria 202, 'Selected nonheterocyclic polycyclic aromatic hydrocarbons,' World Health Organization, Geneva(1998)
  2. Schwarzenbach, R. P., Gschwend, P. M., and Imboden, D. M., Environmental Organic Chemistry, Jhon Wiley & Sons, New York, USA(1993)
  3. US Environmental Protection Agency, electronic source 2003, http://www.epa.gov/ttn/atw/hlthef
  4. Stohs, S. J., Ohia, S., and Bagchi, D., 'Naphthalene toxicity and antioxidant nutrients,' Toxicology, 180, 97 - 195(2002) https://doi.org/10.1016/S0300-483X(02)00384-0
  5. Bollag, J. M., 'Decontaminating soil with enzymes: An in situ method using phenolic and anilinic compounds,' Environ. Sci. Technol., 26, 1876-1881(1992) https://doi.org/10.1021/es00034a002
  6. Bollag, J. M., Myers, C., Pal, S., and Huang, P. M., 'The role of abiotic and biotic catalysts in the transformation of phenol compounds,' In Environmental Impact of Soil Components Interactions: Natural and Anthropogenic Organics(P. M. Haung, J. Berthelin, J. M. Boallg, W. B. McGill, A. L. Pake eds.), CRC Press, Boca Raton, FL, pp. 299-310(1995)
  7. Aktas, N., Cicek, H., Unal, A. T., kibarer, G., Kolankaya, N., and Tanyolac, A., 'Reaction kinetics for lactase-catalyzed polymerization of l-naphthol,' Biores. Technol., 80, 29-36(2001) https://doi.org/10.1016/S0960-8524(01)00063-3
  8. Seling, H., Michael Keinath, T., and Weber, W. J., 'Sorption and manganese-induced oxidative coupling of hydroxylate aromatic compounds by natural geosorbents,' Environ. Sci. Technol., 37, 4122-4127(2003) https://doi.org/10.1021/es020999l
  9. Parikh, S. J., chorover, J., and Burgos, W. D., 'Interaction of phenanthrene and its primary metabolite(1-hydroxy-2-naphthoic acid) with estuarine sediments and humic fractions,' J. Contam. Hydrol., 72, 1-22(2004) https://doi.org/10.1016/j.jconhyd.2003.10.004
  10. Kang, K.-H., Dec, J., Park, H., and Bollag, J.-M., 'Transformation of the fungicide cyprodinil by a laccase of Trametes viIIosa in the presence of phenolic mediators and humic acid,' Water Res., 36, 200-208(2002b)
  11. Bollag, J.-M., Shuttleworth, K. L., and Anderson, D. H., 'Laccase-mediated detoxification of phenolic compounds,' Appl. Environ. Microbiol., 54, 3086-3091(1988)
  12. Sparks, D. L., Environmental Soil Chemistry, pp. 99-139, Academic Press Inc., California, USA(1995)
  13. Shindo, H. and Huang, P. M., 'Role of Mn(IV) oxide in abiotic formation of humic substances in the environment,' Nature(London), 298, 363-365(1982) https://doi.org/10.1038/298363a0
  14. McKenzie, R. M., 'The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese,' Miner. Mag., 38, 493 - 502(1971) https://doi.org/10.1180/minmag.1971.038.296.12
  15. McBride, M. B., 'Oxidation of dihydroxybenzenes in aerated aqueous suspensions of birnessite,' Clay and Minerals, 37(4), 341-347(1989) https://doi.org/10.1346/CCMN.1989.0370407
  16. Karthikeyan, K. G. and Chorover, J., 'Effects of solution chemistry on the oxidative transformation of 1-naphtol and its complexation with humic acid,' Environ. Sci. Technol., 34, 2939 - 2946(2000) https://doi.org/10.1021/es991445u
  17. Silvertein, R. M. and Webster, F. X., Spectrometric Identification of Organic Compounds, 6th Ed., Jhon Wiley & Sons(1997)
  18. Majcher, E. H., Chorover, J., Bollag, J.-M., and Huang, P. M., 'Evolution of $CO_2$ during birnessite-induced oxidation of $^{14}C-labeled$ catechol,' Soil Sci. Soc. Am. J., 64, 157-163(2000) https://doi.org/10.2136/sssaj2000.641157x
  19. McBride, M. B., 'Oxidation of 1,2- and 1,4-dihydroxybenzens by birnessite in acidic aqueous suspension,' Clays and Clay Minerals, 37, 479-486(1989) https://doi.org/10.1346/CCMN.1989.0370514
  20. Xu, F., Koch, D. E., Kong, I. C., Hunter, R. P., and bhandari, A., 'Peroxidase-mediated oxidative coupling of I-naphthol: Characterization of polymerization products,' Water Res., 39, 2358-2368(2005) https://doi.org/10.1016/j.watres.2005.04.010
  21. Hesham R. El-Seedi., Shosuke Yamamura., and Shigeru, Nishiyama., 'Reactivity of naphthol towards nucIeophiIes in anodic oxidation,' Tetrahedron, 58, 7485-7489(2002) https://doi.org/10.1016/S0040-4020(02)00829-3
  22. Agrawal, A. and Tratnyek, P. G., 'Reduction of nitro aromatic compounds by zero-valent iron metal,' Environ. Sci. Technol., 30, 153-160(1996) https://doi.org/10.1021/es950211h
  23. PizzigaIIo, M. D. R., Ruggiero, P., Crecchio, C., and Mininni, R., 'Manganese and iron oxides as reactants for oxidation of chlorophenols,' Soil Sci. Soc. Am. J., 59, 444-452(1995) https://doi.org/10.2136/sssaj1995.03615995005900020025x
  24. McBride, M. B., 'Adsorption and oxidation of phenolic compounds by iron an manganese oxides,' Soil Sci. Soc. Am. J., 51, 1466-1472(1987) https://doi.org/10.2136/sssaj1987.03615995005100060012x
  25. Stone, A. T. and Mogan, J. J., 'Reduction and dissolution of Mn(III) and Mn(IV) oxides by organics. 2. Survey of the reactivity of organics,' Environ. Sci. Technol., 18, 617-624(1984) https://doi.org/10.1021/es00126a010
  26. Shindo, H. and Huang, P. M., 'Catalytic effect of manganese(IV), iron(III), AI, and Si oxides on the formation of phenolic polymers,' Soil Sci. Soc. Am. J., 48, 927-934(1984) https://doi.org/10.2136/sssaj1984.03615995004800040045x
  27. Odziemkowski, M. S. and Gillham, R. W., 'Surface redox reactions on commercial grade granular iron(steel) and their influence on the reductive dechlorination of solvent. Micro Raman Spectroscopic Studies,' 213th ACS National Meeting, April 13-17, San Francisco, California (1997)