DOI QR코드

DOI QR Code

Adsorption Characteristics of Ammonia-Nitrogen by Zeolitic Materials Synthesized from Jeju Scoria

제주 스코리아로부터 합성한 제올라이트 물질에 의한 암모니아성 질소의 흡착 특성

  • Lee, Chang-Han (Department of Environmental Administration, Catholic University of Pusan) ;
  • Hyun, Sung-Su (Research Institute of Health & Environment, Jeju Special Self-Governing Province) ;
  • Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University)
  • 이창한 (부산가톨릭대학교 환경행정학과) ;
  • 현성수 (제주특별자치도 보건환경연구원) ;
  • 감상규 (제주대학교 환경공학과)
  • Received : 2020.10.23
  • Accepted : 2020.11.30
  • Published : 2020.12.31

Abstract

The characteristics of ammonia-nitrogen (NH4+-N) adsorption by a zeolitic material synthesized from Jeju scoria using the fusion and hydrothermal method was studied. The synthetic zeolitic material (Z-SA) was identified as a Na-A zeolite by X-ray diffraction, X-ray fluorescence analysis and scanning electron microscopy images. The adsorption of NH4+-N using Jeju scoria and different types of zeolite such as the Z-SA, natural zeolite, and commercial pure zeolite (Na-A zeolite, Z-CS) was compared. The equilibrium of NH4+-N adsorption was reached within 30 min for Z-SA and Z-CS, and after 60 min for Jeju scoria and natural zeolite. The adsorption capacity of NH4+-N increased with approaching to neutral when pH was in the range of 3-7, but decreased above 7. The removal efficiency of NH4+-N increased with increasing Z-SA dosage, however, its adsorption capacity decreased. For initial NH4+-N concentrations of 10-200 mg/L at pH 7, the adsorption rate of NH4+-N was well described by the pseudo second-order kinetic model than the pseudo first-order kinetic model. The adsorption isotherm was well fitted by the Langmuir model. The maximum uptake of NH4+-N obtained from the Langmuir model decreased in the order of Z-CS (46.8 mg/g) > Z-SA (31.3 mg/g) > natural zeolite (5.6 mg/g) > Jeju scoria (0.2 mg/g).

Keywords

Acknowledgement

이 논문은 2020년도 제주녹색환경경지원센터 연구개발 지원사업(연구과제명: 제주 스코리아로부터 제조된 Na-A 제올라이트계 흡착제를 이용한 양돈분뇨 중 암모니아성 질소 및 중금속 제거 흡착공정 개발)에 의하여 수행되었으며, 이의 지원에 감사드립니다.

References

  1. Beebe, D. A., Castle, J. W., Rodgers Jr, J. H., 2013, Treatment of ammonia in pilot-scale constructed wetland systems with clinoptilolite, J. Environ. Chem. Eng., 1(4), 1159-1165. https://doi.org/10.1016/j.jece.2013.08.034
  2. Chae, Y. G., 1988, Nitrate removal by ion exchange, PhD Thesis, Dongeui Univ., Busan, 1-176.
  3. Choi, O. K., Lee, K., Dong, D., Lee, J., 2016, Recovery of nitrogen from high strength waste stream by using natural zeolite (Clinoptololite), J. Korean Soc. Water & Wastewater, 30(1), 105-111. https://doi.org/10.11001/jksww.2016.30.1.105
  4. Cho, Y. W., 1999, Adsorption characteristics of Cheju scoria for the removal of heavy metals, MS Thesis, Cheju National University, Cheju, 1-67.
  5. Ding, Y., Sartaj, M., 2015, Statistical analysis and optimization of ammonia removal from aqueous solution by zeolite using factorial design and response surface methodology, J. Environ. Chem. Eng., 3(2), 807-814. https://doi.org/10.1016/j.jece.2015.03.025
  6. Freundlich, H. M. F., 1906, Over the adsorption in solution, J. Phys. Chem., 57(1), 385-470.
  7. Henmi, T., 1987, Increase in cation exchange capacity of coal fly ash by alkali treatment, Clay Sci., 6(6), 277-282.
  8. Ho, Y. S., McKay, G., 1999, Pseudo-second order model for sorption processes, Process Biochem., 34(5), 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
  9. Hollman, G. G., Steenbruggen, G., Janssen, J. M., 1999, A Two-step process for the synthesis of zeolites from coal fly ash, Fuel, 85(5-6), 657-663. https://doi.org/10.1016/j.fuel.2005.09.008
  10. Huo, H., Lin, H., Dong, Y., Cheng, H., Wang, H., Cao, L., 2012, Ammonia-nitrogen and phosphates sorption from simulated reclaimed waters by modified clinoptilolite, J. Hazard. Mater., 229-230(30), 292-297. https://doi.org/10.1016/j.jhazmat.2012.06.001
  11. Hyun, S. S., 1999, Studies on the removal of heavy metal ions in wastewater using the zeolites synthesized from Cheju scoria, MS Thesis, Cheju National University, Cheju, 1-70.
  12. Ikeda, T., Nagase, T., Hiyoshi, N., Oumi, Y., 2012, Crystal structure, characterization and thermal stability of NH4+-exchanged-LIT-type zeolite, Micro. Meso. Mater., 163(15), 42-50. https://doi.org/10.1016/j.micromeso.2012.06.008
  13. Jeon, B. E., Ahn, B. J., Chang, W., Kam, S. K., Lee, M. G., 2004, Zeolite conversion of Cheju Scoria, J. Ind. Eng. Chem., 10(4), 618-622.
  14. Kam, S. K., Hong, J. Y., Hu, C. G., Lee, M. G., 2003, Adsorption characteristics of Cd(II) and Cu(II) by zeolites synthesized from Hwangto, J. Environ. Sci., 12(7), 817-824.
  15. Kam, S. K., Hyun, S. S., Lee, M. G., 2011, Removal of divalent heavy metal ions by Na-P1 synthesized from Jeju scoria, J. Environ. Sci., 20(10), 1337-1345.
  16. Karadag, D., Koc, Y., Turan, M., Armagan, B., 2006, Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite, J. Hazard. Mater., 136(3), 604-609. https://doi.org/10.1016/j.jhazmat.2005.12.042
  17. Karadag, D., Tok, S., Akgul, E., Turan, M., Ozturk, M., Demir, A., 2008, Ammonium removal from sanitary landfill leachate using natural Gordes clinopyololite, J. Hazard. Mater., 153(1-2), 60-66. https://doi.org/10.1016/j.jhazmat.2007.08.019
  18. Lagergren, S., 1898, About the theory of so-called adsorption of soluble substances, Kunglia Svenska Vetenskapsa-kademiens Handlingar, 24(4), 1-39.
  19. Langmuir, I., 1918, The adsorption of gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 40(9), 1361-1403. https://doi.org/10.1021/ja02242a004
  20. Lee, C. H., Kam, S. K., Lee, M. G., 2017, Removal characteristics of Sr ion by Na-A zeolite synthesized using coal fly ash generated from a thermal power plant, J. Environ. Sci. Interm., 26(3), 363-371. https://doi.org/10.5322/JESI.2017.26.3.363
  21. Lee, C. H., Lee, M. G., 2018, Evaluation of exchange capacities of Ca2+ and Mg2+ ions by Na-A zeolite synthesized from coal fly ash, J. Environ. Sci. Intern. 27(11), 975-982. https://doi.org/10.5322/JESI.2018.27.11.975
  22. Lee, C. H., Park, J. M., Lee, M. G., 2014, Adsorption characteristics of Sr(II) and Cs(I) ions by zeolite synthesized from coal fly ash, J. Environ. Sci. Intern., 23, 1987-1998. https://doi.org/10.5322/JESI.2014.23.12.1987
  23. Lee, M. G., Cheon, J. K., Kam, S. K., 2003, Heavy metal adsorption characteristics of zeolite synthesized from fly ash, J. Ind. Eng. Chem., 9(2), 174-180.
  24. Lee, M. G., Park, J. W., Kam, S. K., Lee, C. H., 2018, Synthesis of Na-A zeolite from Jeju Island scoria using fusion/hydrothermal method, Chemosphere, 207, 203-208. https://doi.org/10.1016/j.chemosphere.2018.05.080
  25. Lee, S. H., Ahn, B. J., Chang, W., Kam, S. K., Lee, M. G., 2005, Zeolitic conversion of Gochang Loess, J. Ind. Eng. Chem., 11(2), 297-302.
  26. Lin, L., Lei, Z., Wang, L., Liu, X., Zhang, Y., Wan, C., Lee, D. J., Tay, J. H., 2013, Adsorption mechanisms of high-levels of ammonium onto natural and NaCl-modified zeolites, Sep. Purif. Technol., 103(15), 15-20. https://doi.org/10.1016/j.seppur.2012.10.005
  27. Machado, N. R. C. F., Miotto, D. M. M., 2005, Synthesis of Na-A and -X zeolites from oil shale ash. Fuel 84(18), 2289-2294. https://doi.org/10.1016/j.fuel.2005.05.003
  28. Marttinen, S. K., Kettunen, R. H., Sormunen, K. M., Soimasuo, R. M., Rintala, J. A., 2002, Screening of physico-chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates, Chemosphere, 46(6), 851-858. https://doi.org/10.1016/S0045-6535(01)00150-3
  29. Moon, Y. T., Kim, T. S., 1995, Synthesis and physico-chemical characteristics of the zeolites from waste anthracite briquette ash and fly ash, Korean Soc. Soil Sci. Fert., 28(1), 11-21.
  30. Page, A. L., 1985, Methods of Soil Analysis (2nd ed.), Part 2, Chemical and Microbiological Properties. Am. Soc. Agron. Inc., Soil Soc. Am. Inc., Madison, Wisconsin, USA.
  31. Park, J., Seo, Y., Rhu, S. H., Kim, S. D., 2017, Ammonia adsorption capacity of zeolite X with different cations, App. Chem. Eng., 28(3), 355-359. https://doi.org/10.14478/ace.2017.1031
  32. Qui, W., Zheng, Y., 2009, Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash, Chem. Eng. J., 145(3), 483-488. https://doi.org/10.1016/j.cej.2008.05.001
  33. Tanaka, H., Fujii, A., 2009, Effect of stirring on the dissolution of coal fly ash and synthesis of pure form Na-A and -X zeolites by two step process, Adv. Powd. Tech., 20(5), 473-479. https://doi.org/10.1016/j.apt.2009.05.004
  34. Treacy, M. M. J., Higgins, J. B., 2001, Collection of simulated XRD powder patterns for zeolites, Elsevier, Amsterdam.
  35. Walkley, A., Black, I. A., 1934, An Examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method, Soil Sci., 37(1), 29-38. https://doi.org/10.1097/00010694-193401000-00003
  36. Wang, S., Peng, Y., 2010, Natural zeolites as effective adsorbents in water and wastewater treatment, Chem. Eng. J., 156(1), 11-24. https://doi.org/10.1016/j.cej.2009.10.029
  37. Wang, Y. F., Lin, F., Pang, W. Q., 2007, Ammonium exchange in aqueous solution using Chinese natural clinoptilolite and modified zeolite, J. Hazard. Mater., 142(1-2), 160-164. https://doi.org/10.1016/j.jhazmat.2006.07.074