• Title/Summary/Keyword: protein release

Search Result 834, Processing Time 0.03 seconds

NFATc Mediates Lipopolysaccharide and Nicotine-Induced Expression of iNOS and COX-2 in Human Periodontal Ligament Cells (사람 치주인대세포에서 Lipopolysaccharide와 니코틴으로 유도된 iNOS와 COX-2 발현에 NFATc의 관여)

  • Lee, Sang-Im;Yu, Ji-Su
    • Journal of dental hygiene science
    • /
    • v.15 no.6
    • /
    • pp.753-760
    • /
    • 2015
  • Although nuclear factor of activated T cell (NFAT) plays a key role in inflammation, its anti-inflammatory effects and mechanism of action in periodontitis are still unknown. This study aimed to identify the effects of NFAT on the proinflammatory mediators activated by lipopolysaccharide (LPS) plus nicotine stimulation in human periodontal ligament cells (hPDLCs). The production of nitric oxide (NO) and prostaglandin $E_2(PGE_2)$ was evaluated using Griess reagent and an enzyme immunoassay, respectively. The expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and NFAT proteins was evaluated by Western blot analysis. LPS plus nicotine synergistically induced the production of NO and $PGE_2$ and increased the protein expression of iNOS, COX-2 and NFAT. Treatment with an NFAT inhibitor blocked the LPS plus nicotine-stimulated NO and $PGE_2$ release as well as the expression of iNOS and COX-2. Our data suggest that the LPS plus nicotine-induced inflammatory effects on hPDLCs may act through a novel mechanism involving the action of NFAT. Thus, NFAT may provide a potential therapeutic target for the treatment of periodontal disease associated with smoking and dental plaque.

The Immunomodulatory Activity of Mori folium, the Leaf of Morus alba L., in RAW 264.7 Macrophages in Vitro

  • Kwon, Da Hye;Cheon, Ji Min;Choi, Eun-Ok;Jeong, Jin Woo;Lee, Ki Won;Kim, Ki Young;Kim, Sung Goo;Kim, Suhkmann;Hong, Su Hyun;Park, Cheol;Hwang, Hye-Jin;Choi, Yung Hyun
    • Journal of Cancer Prevention
    • /
    • v.21 no.3
    • /
    • pp.144-151
    • /
    • 2016
  • Background: Immunoregulatory elements have emerged as useful immunotherapeutic agents against cancer. In traditional medicine, Mori folium, the leaf of Morus alba L. (Moraceae), has been used for various medicinal purposes; however, the immunomodulatory effects have not been fully identified. We evaluated the immunoenhancing potential of water extract of Mori folium (WEMF) in murine RAW264.7 macrophages. Methods: RAW264.7 cells were treated with WEMF for 24 hours and cell viability was detected by an MTT method. Nitric oxide (NO) levels in the culture supernatants were assayed using Griess reagent. The productions of prostaglandin $E_2$ ($PGE_2$) and immune-related cytokines was measured using ELISA detection kits. The mRNA and protein expression levels of Inducible NO synthase, COX-2, and cytokines were assayed by reverse transcription-PCR and Western blotting, respectively. The effect of WEMF on phagocytic activity was measured using a Phagocytosis Assay Kit. Results: WEMF significantly stimulated the production of NO and $PGE_2$ as immune response parameters at noncytotoxic concentrations, which was associated with the increased expression of inducible NO synthase and COX-2. The release and expression of cytokines, such as $TNF-{\alpha}$, interleukin $(IL)-1{\beta}$, IL-6, and IL-10, were also significantly increased in response to treatment with WEMF. Moreover, WEMF promoted the macrophagic differentiation of RAW264.7 cells and the resulting phagocytosis activity. Conclusions: WEMF has the potential to modulate the immune function by regulating immunological parameters. Further studies are needed to identify the active compounds and to support the use of WEMF as an immune stimulant.

Toxic Effects of Sodium Alginate from Brown Algae on HepG2 Human Liver Cell Functions (갈조류 유래 알긴산이 HepG2 간세포 독성에 미치는 영향)

  • Kang, Nam-Sung;Pyo, Suhk-Neung;Jung, Da-Hye;Eum, Hyun-Ae;Jang, Ki-Hyo;Um, Byung-Hun;Sohn, Eun-Hwa
    • Korean Journal of Plant Resources
    • /
    • v.23 no.2
    • /
    • pp.151-156
    • /
    • 2010
  • Alginates are polysaccharides isolated from brown algae with gel-forming properties composed of 1,4-linked beta-D-mannuronic acid (M), alpha-L-guluronic acid (G), and alternating (MG) blocks. In this study, we have examined the toxic effects of high M-alginate to activate HepG2 human liver cells. Alginate enhanced the NO production and iNOS protein expression in HepG2 cells. In addition, alginates stimulated the HepG2 to induce IL-1 release and expression of TGF-beta1, which could influence the liver inflammation and chirrhosis. These findings suggest that high M-alginate form brown algae may have toxic effects on liver cells.

Asunaprevir, a Potent Hepatitis C Virus Protease Inhibitor, Blocks SARS-CoV-2 Propagation

  • Lim, Yun-Sook;Nguyen, Lap P.;Lee, Gun-Hee;Lee, Sung-Geun;Lyoo, Kwang-Soo;Kim, Bumseok;Hwang, Soon B.
    • Molecules and Cells
    • /
    • v.44 no.9
    • /
    • pp.688-695
    • /
    • 2021
  • The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has become a global health concern. Various SARS-CoV-2 vaccines have been developed and are being used for vaccination worldwide. However, no therapeutic agents against coronavirus disease 2019 (COVID-19) have been developed so far; therefore, new therapeutic agents are urgently needed. In the present study, we evaluated several hepatitis C virus direct-acting antivirals as potential candidates for drug repurposing against COVID-19. Theses include asunaprevir (a protease inhibitor), daclatasvir (an NS5A inhibitor), and sofosbuvir (an RNA polymerase inhibitor). We found that asunaprevir, but not sofosbuvir and daclatasvir, markedly inhibited SARS-CoV-2-induced cytopathic effects in Vero E6 cells. Both RNA and protein levels of SARS-CoV-2 were significantly decreased by treatment with asunaprevir. Moreover, asunaprevir profoundly decreased virion release from SARS-CoV-2-infected cells. A pseudoparticle entry assay revealed that asunaprevir blocked SARS-CoV-2 infection at the binding step of the viral life cycle. Furthermore, asunaprevir inhibited SARS-CoV-2 propagation in human lung Calu-3 cells. Collectively, we found that asunaprevir displays broad-spectrum antiviral activity and therefore might be worth developing as a new drug repurposing candidate for COVID-19.

The Inhibitory Mechanism on Acetylcholine-Induced Contraction of Bladder Smooth Muscle in the Streptozotocin-Induced Diabetic Rat

  • Han, Jong Soo;Kim, Su Jin;Nam, Yoonjin;Lee, Hak Yeong;Kim, Geon Min;Kim, Dong Min;Sohn, Uy Dong
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.101-106
    • /
    • 2019
  • Most diabetic patients experience diabetic mellitus (DM) urinary bladder dysfunction. A number of studies evaluate bladder smooth muscle contraction in DM. In this study, we evaluated the change of bladder smooth muscle contraction between normal rats and DM rats. Furthermore, we used pharmacological inhibitors to determine the differences in the signaling pathways between normal and DM rats. Rats in the DM group received an intraperitoneal injection of 65 mg/kg streptozotocin and measured blood glucose level after 14 days to confirm DM. Bladder smooth muscle contraction was induced using acetylcholine (ACh, $10^{-4}M$). The materials such as, atropine (a muscarinic receptor antagonist), U73122 (a phospholipase C inhibitor), DPCPX (an adenosine $A_1$ receptor antagonist), udenafil (a PDE5 inhibitor), prazosin (an ${\alpha}_1$-receptor antagonist), papaverine (a smooth muscle relaxant), verapamil (a calcium channel blocker), and chelerythrine (a protein kinase C inhibitor) were pre-treated in bladder smooth muscle. We found that the DM rats had lower bladder smooth muscle contractility than normal rats. When prazosin, udenafil, verapamil, and U73122 were pre-treated, there were significant differences between normal and DM rats. Taken together, it was concluded that the change of intracellular $Ca^{2+}$ release mediated by PLC/IP3 and PDE5 activity were responsible for decreased bladder smooth muscle contractility in DM rats.

Treatment with ultra-dilutions of Arnica montana increases COX-2 expression and PGE2 secretion in mouse chondrocytes (생쥐 연골세포에 Arnica montana 처리에 따른 COX-2 발현과 PGE2 분비 비교)

  • Kim, Yun Kyu;Yeo, Myeong Gu
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.2
    • /
    • pp.331-337
    • /
    • 2019
  • Objective: We studied the effects of 4x, 30x, 30c, and 200c homeopathic dilutions of A. montana on inflammation in primary cultured mouse chondrocytes. Methods: Examined expression of Coll-2 and COX-2, and secretion of PGE2. Results: Treatment with 4x, 30x, and 30c A. montana decreased mRNA expression of Coll-2 and 30x A. montana increased mRNA expression of COX-2, while treatment with 30x and 30c A. montana increased protein expression of COX-2. Treatment with the 30c A. montana increased release of PGE2. Conclusion: Treatment with A. montana induces dedifferentiation and inflammatory responses, including increased COX-2 expression and PGE2 secretion.

7,8,4'-Trihydroxyisoflavone, a Metabolized Product of Daidzein, Attenuates 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Cells

  • Ko, Yong-Hyun;Kim, Seon-Kyung;Kwon, Seung-Hwan;Seo, Jee-Yeon;Lee, Bo-Ram;Kim, Young-Jung;Hur, Kwang-Hyun;Kim, Sun Yeou;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.27 no.4
    • /
    • pp.363-372
    • /
    • 2019
  • Daidzein isolated from soybean (Glycine max) has been widely studied for its antioxidant and anti-inflammatory activities. However, the protective effects of 7,8,4'-trihydroxyisoflavone (THIF), a major metabolite of daidzein, on 6-hydroxydopamine (OHDA)-induced neurotoxicity are not well understood. In the current study, 7,8,4'-THIF significantly inhibited neuronal cell death and lactate dehydrogenase (LDH) release induced by 6-OHDA in SH-SY5Y cells, which were used as an in vitro model of Parkinson's disease (PD). Moreover, pretreatment with 7,8,4'-THIF significantly increased the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) and decreased malondialdehyde (MDA) activity in 6-OHDA-induced SH-SY5Y cells. In addition, 7,8,4'-THIF significantly recovered 6-OHDA-induced cleaved caspase-3, cleaved caspase-9, cleaved poly-ADP-ribose polymerase (PARP), increased Bax, and decreased Bcl-2 levels. Additionally, 7,8,4'-THIF significantly restored the expression levels of phosphorylated c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 1/2 (ERK 1/2), phosphatidylinositol 3-kinases (PI3K)/Akt, and glycogen synthase kinase-3 beta ($GSK-3{\beta}$) in 6-OHDA-induced SH-SY5Y cells. Further, 7,8,4'-THIF significantly increased the reduced tyrosine hydroxylase (TH) level induced by 6-OHDA in SH-SY5Y cells. Collectively, these results suggest that 7,8,4'-THIF protects against 6-OHDA-induced neuronal cell death in cellular PD models. Also, these effects are mediated partly by inhibiting activation of the MAPK and PI3K/Akt/$GSK-3{\beta}$ pathways.

Adverse effect of IL-6 on the in vitro maturation of porcine oocytes

  • Yi, Young-Joo;Adikari, Adikari Arachchige Dilki Indrachapa;Moon, Seung-Tae;Heo, Jung-Min;Lee, Sang-Myeong
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.607-615
    • /
    • 2021
  • Cytokines are protein mediators that possess the ability to assist cell-to-cell communication in immune system-related activities. In general, pathogen endotoxins activate the release of inflammatory mediators, and with time, there is an increase in the cytokine levels in the body. Interleukin (IL)-6 mediates the acute-phase inflammatory response, and elevated IL-6 levels have been reported in peritoneal fluids of women with pelvic inflammation and endometriosis, thereby associating it with oocyte quality and infertility. To overcome subfertility or infertility in humans and animals, the present study was done to examine the effect of recombinant IL-6 on porcine oocytes matured in vitro and subsequently to determine the fertilization rate and embryo development. Porcine oocytes were incubated with varying concentrations of IL-6 (0 - 2 ㎍·mL-1) for 44 h followed by in vitro fertilization and culturing of the oocytes. The oocytes or embryos were fixed with 3.7% paraformaldehyde (PFA) and stained with fluorescence dyes, and the meiotic spindle, chromosome organization, fertilization status and embryo development were subsequently assessed under a fluorescence microscope. We observed induction of an abnormal meiotic spindle alignment in the oocytes incubated with IL-6 compared to the control oocytes incubated without IL-6. Moreover, significantly decreased fertilization rates and embryo development were observed for oocytes incubated with IL-6 (p < 0.05). Thus, an increased IL-6 level during oocyte maturation could be associated with fertilization failure due to an aberrant chromosomal alignment and a disruption of the cortical granules. Taken together, our results indicate that successful assisted reproduction can be achieved by controlling the levels of inflammatory cytokines.

Formosanin C attenuates lipopolysaccharide-induced inflammation through nuclear factor-κB inhibition in macrophages

  • Yin, Limin;Shi, Chaohong;Zhang, Zhongchen;Wang, Wensheng;Li, Ming
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.5
    • /
    • pp.395-401
    • /
    • 2021
  • Extended inflammation and cytokine production pathogenically contribute to a number of inflammatory disorders. Formosanin C (FC) is the major diosgenin saponin found in herb Paris formosana Hayata (Liliaceae), which has been shown to exert anti-cancer and immunomodulatory functions. In this study, we aimed to investigate anti-inflammatory activity of FC and the underlying molecular mechanism. RAW264.7 macrophages were stimulated with lipopolysaccharide (LPS) or pretreated with FC prior to being stimulated with LPS. Thereafter, the macrophages were subjected to analysis of the expression levels of pro-inflammatory mediators, including nitric oxide (NO), prostaglandin E2 (PGE), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6, as well as two relevant enzymes, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). The analysis revealed that FC administration blunted LPS-induced production of NO and PGE in a dose-dependent manner, while the expression of iNOS and COX-2 at both mRNA and protein levels was inhibited in LPS-stimulated macrophages pre-treated with FC. Moreover, LPS stimulation upregulated mRNA expression and medium release of TNF-α, IL-1β, and IL-6, whereas this effect was blocked upon FC pre-administration. Mechanistic studies showed that inhibitory effects of FC on LPS-induced inflammation were associated with a downregulation of IκB kinase, IκB, and p65/NF-κB pathway. Taken together, these data suggest that FC possesses an inflammation-suppressing activity, thus being a potential agent for the treatment of inflammation-associated disorders.

Inhibitory effect of broccoli leaf extract on PGE2 production by NF-κB inhibition (NF-κB 저해를 통한 브로콜리 잎 추출물의 PGE2 저해효과)

  • Park, Sook Jahr;An, Iseul;Noh, Gyu Pyo;Yoo, Byung Hyuk;Lee, Jong Rok
    • The Korea Journal of Herbology
    • /
    • v.34 no.6
    • /
    • pp.117-124
    • /
    • 2019
  • Objective : Broccoli is edible green plant that has a wide variety of health benefits including cancer prevention and cholesterol reduction. However, leaves of broccoli are not eaten and are mostly left as waste. This study was conducted to evaluate the effects of the broccoli leaf extract (BLE) on prostaglandin E2 (PGE2) production related to nuclear factor kappa B (NF-κB) signaling in lipopolysaccharide (LPS)-activated macrophages. Methods : BLE was prepared by extracting dried leaf with ethanol. Cell viability was determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. PGE2 and inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). Expression level of each protein was monitored by Western blot analysis. Results : In LPS-activated Raw264.7 cells, PGE2 release into culture medium was dramatically enhanced compared to control cells. However, increased PGE2 was attenuated dose-dependently by treatment with BLE. Inhibition of PGE2 production by BLE was due to the suppression of cyclooxygenase-2 (COX-2) expression determined by Western blot analysis. BLE also inhibited the production of inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α). Inhibition at PGE2 and cytokine was mediated from inhibition of nuclear translocation of NF-κB due to the repression of inhibitory kappa B alpha (IκBα) phosphorylation and degradation. Conclusion : This study showed that BLE exerted inhibitory activities against PGE2, which is critical for the initiation and resolution of inflammatory responses, and that inhibition of PGE2 was mediated by suppression of NF-κB signaling. These results suggest that the waste broccoli leaves could be used for controlling inflammation.