Browse > Article
http://dx.doi.org/10.14348/molcells.2021.0076

Asunaprevir, a Potent Hepatitis C Virus Protease Inhibitor, Blocks SARS-CoV-2 Propagation  

Lim, Yun-Sook (Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University)
Nguyen, Lap P. (Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University)
Lee, Gun-Hee (Korea Zoonosis Research Institute, Jeonbuk National University)
Lee, Sung-Geun (Korea Zoonosis Research Institute, Jeonbuk National University)
Lyoo, Kwang-Soo (Korea Zoonosis Research Institute, Jeonbuk National University)
Kim, Bumseok (College of Veterinary Medicine, Jeonbuk National University)
Hwang, Soon B. (Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University)
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has become a global health concern. Various SARS-CoV-2 vaccines have been developed and are being used for vaccination worldwide. However, no therapeutic agents against coronavirus disease 2019 (COVID-19) have been developed so far; therefore, new therapeutic agents are urgently needed. In the present study, we evaluated several hepatitis C virus direct-acting antivirals as potential candidates for drug repurposing against COVID-19. Theses include asunaprevir (a protease inhibitor), daclatasvir (an NS5A inhibitor), and sofosbuvir (an RNA polymerase inhibitor). We found that asunaprevir, but not sofosbuvir and daclatasvir, markedly inhibited SARS-CoV-2-induced cytopathic effects in Vero E6 cells. Both RNA and protein levels of SARS-CoV-2 were significantly decreased by treatment with asunaprevir. Moreover, asunaprevir profoundly decreased virion release from SARS-CoV-2-infected cells. A pseudoparticle entry assay revealed that asunaprevir blocked SARS-CoV-2 infection at the binding step of the viral life cycle. Furthermore, asunaprevir inhibited SARS-CoV-2 propagation in human lung Calu-3 cells. Collectively, we found that asunaprevir displays broad-spectrum antiviral activity and therefore might be worth developing as a new drug repurposing candidate for COVID-19.
Keywords
asunaprevir; COVID-19; drug repurposing; hepatitis C virus; SARS-CoV-2;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Corbett, K.S., Flynn, B., Foulds, K.E., Francica, J.R., Boyoglu-Barnum, S., Werner, A.P., Flach, B., O'Connell, S., Bock, K.W., Minai, M., et al. (2020). Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N. Engl. J. Med. 383, 1544-1555.   DOI
2 Machhi, J., Herskovitz, J., Senan, A.M., Dutta, D., Nath, B., Oleynikov, M.D., Blomberg, W.R., Meigs, D.D., Hasan, M., Patel, M., et al. (2020). The natural history, pathobiology, and clinical manifestations of SARS-CoV-2 infections. J. Neuroimmune Pharmacol. 15, 359-386.   DOI
3 Gane, E.J., Stedman, C.A., Hyland, R.H., Ding, X., Svarovskaia, E., Symonds, W.T., Hindes, R.G., and Berrey, M.M. (2013). Nucleotide polymerase inhibitor sofosbuvir plus ribavirin for hepatitis C. N. Engl. J. Med. 368, 34-44.   DOI
4 Grein, J., Ohmagari, N., Shin, D., Diaz, G., Asperges, E., Castagna, A., Feldt, T., Green, G., Green, M.L., Lescure, F.X., et al. (2020). Compassionate use of remdesivir for patients with severe Covid-19. N. Engl. J. Med. 382, 2327-2336.   DOI
5 Soumana, D.I., Ali, A., and Schiffer, C.A. (2014). Structural analysis of asunaprevir resistance in HCV NS3/4A protease. ACS Chem. Biol. 9, 2485-2490.   DOI
6 Reed, L.J. and Muench, H. (1938). A simple method of estimating fifty percent endpoints. Am. J. Hyg. 27, 493-497.
7 Law, G.L., Tisoncik-Go, J., Korth, M.J., and Katze, M.G. (2013). Drug repurposing: a better approach for infectious disease drug discovery? Curr. Opin. Immunol. 25, 588-592.   DOI
8 Lim, Y.S., Mai, H.N., Nguyen, L.P., Kang, S.M., Tark, D., and Hwang, S.B. (2021). Adenosylhomocysteinase like 1 interacts with nonstructural 5A and regulates hepatitis C virus propagation. J. Microbiol. 59, 101-109.   DOI
9 Mulligan, M.J., Lyke, K.E., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Neuzil, K., Raabe, V., Bailey, R., Swanson, K.A., et al. (2020). Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 586, 589-593.   DOI
10 Park, C., Min, S., Park, E.M., Lim, Y.S., Kang, S., Suzuki, T., Shin, E.C., and Hwang, S.B. (2015). Pim kinase interacts with nonstructural 5A protein and regulates hepatitis C virus entry. J. Virol. 89, 10073-10086.   DOI
11 Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K.Y., et al. (2020). Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 181, 894-904.e9.   DOI
12 World Health Organization (2020). Coronavirus disease (COVID-19) situation reports. Retrieved December 8, 2020, from https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/
13 Duan, L., Zheng, Q., Zhang, H., Niu, Y., Lou, Y., and Wang, H. (2020). The SARS-CoV-2 spike glycoprotein biosynthesis, structure, function, and antigenicity: implications for the design of spike-based vaccine immunogens. Front. Immunol. 11, 576622.   DOI
14 Ghahremanpour, M.M., Tirado-Rives, J., Deshmukh, M., Ippolito, J.A., Zhang, C.H., de Vaca, I.C., Liosi, M.E., Anderson, K.S., and Jorgensen, W.L. (2020). Identification of 14 known drugs as inhibitors of the main protease of SARS-CoV-2. ACS Med. Chem. Lett. 11, 2526-2533.   DOI
15 Matsuyama, S., Nagata, N., Shirato, K., Kawase, M., Takeda, M., and Taguchi, F. (2010). Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J. Virol. 84, 12658-12664.   DOI
16 Ciotti, M., Angeletti, S., Minieri, M., Giovannetti, M., Benvenuto, D., Pascarella, S., Sagnelli, C., Bianchi, M., Bernardini, S., and Ciccozzi M. (2019). COVID-19 outbreak: an overview. Chemotherapy 64, 215-223.   DOI
17 Coleman, C.M. and Frieman, M.B. (2014). Coronaviruses: important emerging human pathogens. J. Virol. 88, 5209-5212.   DOI
18 Cui, J., Li, F., and Shi, Z.L. (2019). Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181-192.   DOI
19 Gao, M., Nettles, R.E., Belema, M., Snyder, L.B., Nguyen, V.N., Fridell, R.A., Serrano-Wu, M.H., Langley, D.R., Sun, J.H., O'Boyle, D.R., 2nd, et al. (2010). Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature 465, 96-100.   DOI
20 Guy, R.K., Dipaola, R.S., Romanelli, F., and Dutch, R.E. (2020). Rapid repurposing of drugs for COVID-19. Science 368, 829-830.   DOI
21 Agostini, M.L., Andres, E.L., Sims, A.C., Graham, R.L., Sheahan, T.P., Lu, X., Smith, E.C., Case, J.B., Feng, J.Y., Jordan, R., et al. (2018). Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio 9, e00221-18.
22 Choi, J.W., Kim, J.W., Nguyen, L.P., Nguyen, H.C., Park, E.M., Choi, D.H., Han, K.M., Kang, S.M., Tark, D., Lim, Y.S., et al. (2020). Nonstructural NS5A protein regulates LIM and SH3 domain protein 1 to promote hepatitis C virus propagation. Mol. Cells 43, 469-478.   DOI
23 Zhou, Y., Wang, F., Tang, J., Nussinov, R., and Cheng, F. (2020). Artificial intelligence in COVID-19 drug repurposing. Lancet Digit. Health 2, e667-e676.   DOI
24 Warren, T.K., Jordan, R., Lo, M.K., Ray, A.S., Mackman, R.L., Soloveva, V., Siegel, D., Perron, M., Bannister, R., Hui, H.C., et al. (2016). Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 531, 381-385.   DOI
25 Woo, P.C., Huang, Y., Lau, S.K., and Yuen, K.Y. (2010). Coronavirus genomics and bioinformatics analysis. Viruses 2, 1804-1820.   DOI
26 Yousefi, H., Mashouri, L., Okpechi, S.C., Alahari, N., and Alahari, S.K. (2021). Repurposing existing drugs for the treatment of COVID-19/SARS-CoV-2 infection: a review describing drug mechanisms of action. Biochem. Pharmacol. 183, 114296.   DOI
27 Trivedi, J., Mohan, M., and Byrareddy, S.N. (2020). Drug repurposing approaches to combating viral infections. J. Clin. Med. 9, 3777.   DOI
28 Chu, D.K.W., Pan, Y., Cheng, S.M.S., Hui, K.P.Y., Krishnan, P., Liu, Y., Ng, D.Y.M., Wan, C.K.C., Yang, P., Wang, Q., et al. (2020). Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin. Chem. 66, 549-555.   DOI
29 Sheahan, T.P., Sims, A.C., Graham, R.L., Menachery, V.D., Gralinski, L.E., Case, J.B., Leist, S.R., Pyrc, K., Feng, J.Y., Trantcheva, I., et al. (2017). Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med. 9, eaal3653.   DOI
30 Suzuki, Y., Ikeda, K., Suzuki, F., Toyota, J., Karino, Y., Chayama, K., Kawakami, Y., Ishikawa, H., Watanabe, H., Hu, W., et al. (2013). Dual oral therapy with daclatasvir and asunaprevir for patients with HCV genotype 1b infection and limited treatment options. J. Hepatol. 58, 655-662.   DOI
31 Manfredonia, I. and Incarnato, D. (2021). Structure and regulation of coronavirus genomes: state-of-the-art and novel insights from SARS-CoV-2 studies. Biochem. Soc. Trans. 49, 341-352.   DOI
32 Hassan, A.O., Kafai, N.M., Dmitriev, I.P., Fox, J.M., Smith, B.K., Harvey, I.B., Chen, R.E., Winkler, E.S., Wessel, A.W., Case, J.B., et al. (2020). A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell 183, 169-184.e13.   DOI
33 Lefkowitz, E.J., Dempsey, D.M., Hendrickson, R.C., Orton, R.J., Siddell, S.G., and Smith, D.B. (2018). Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res. 46(D1), D708-D717.   DOI
34 Lim, Y.S. and Hwang, S.B. (2011). Hepatitis C virus NS5A protein interacts with phosphatidylinositol 4-kinase type IIIalpha and regulates viral propagation. J. Biol. Chem. 286, 11290-11298.   DOI
35 Lim, Y.S., Tran, H.T., Park, S.J., Yim, S.A., and Hwang, S.B. (2011). Peptidylprolyl isomerase Pin1 is a cellular factor required for hepatitis C virus propagation. J. Virol. 85, 8777-8788.   DOI
36 Lok, A.S., Gardiner, D.F., Lawitz, E., Martorell, C., Everson, G.T., Ghalib, R., Reindollar, R., Rustgi, V., McPhee, F., Wind-Rotolo, M., et al. (2012). Preliminary study of two antiviral agents for hepatitis C genotype 1. N. Engl. J. Med. 366, 216-224.   DOI
37 Murakami, E., Tolstykh, T., Bao, H., Niu, C., Steuer, H.M., Bao, D., Chang, W., Espiritu, C., Bansal, S., Lam, A.M., et al. (2010). Mechanism of activation of PSI-7851 and its diastereoisomer PSI-7977. J. Biol. Chem. 285, 34337-34347.   DOI
38 Nettles, R.E., Gao, M., Bifano, M., Chung, E., Persson, A., Marbury, T.C., Goldwater, R., DeMicco, M.P., Rodriguez-Torres, M., Vutikullird, A., et al. (2011). Multiple ascending dose study of BMS-790052, a nonstructural protein 5A replication complex inhibitor, in patients infected with hepatitis C virus genotype 1. Hepatology 54, 1956-1965.   DOI