Browse > Article
http://dx.doi.org/10.4062/biomolther.2018.136

The Inhibitory Mechanism on Acetylcholine-Induced Contraction of Bladder Smooth Muscle in the Streptozotocin-Induced Diabetic Rat  

Han, Jong Soo (Signaling and Pharmacological Activity Research Lab, College of Pharmacy, Chung-Ang University)
Kim, Su Jin (Signaling and Pharmacological Activity Research Lab, College of Pharmacy, Chung-Ang University)
Nam, Yoonjin (Signaling and Pharmacological Activity Research Lab, College of Pharmacy, Chung-Ang University)
Lee, Hak Yeong (Signaling and Pharmacological Activity Research Lab, College of Pharmacy, Chung-Ang University)
Kim, Geon Min (Signaling and Pharmacological Activity Research Lab, College of Pharmacy, Chung-Ang University)
Kim, Dong Min (Signaling and Pharmacological Activity Research Lab, College of Pharmacy, Chung-Ang University)
Sohn, Uy Dong (Signaling and Pharmacological Activity Research Lab, College of Pharmacy, Chung-Ang University)
Publication Information
Biomolecules & Therapeutics / v.27, no.1, 2019 , pp. 101-106 More about this Journal
Abstract
Most diabetic patients experience diabetic mellitus (DM) urinary bladder dysfunction. A number of studies evaluate bladder smooth muscle contraction in DM. In this study, we evaluated the change of bladder smooth muscle contraction between normal rats and DM rats. Furthermore, we used pharmacological inhibitors to determine the differences in the signaling pathways between normal and DM rats. Rats in the DM group received an intraperitoneal injection of 65 mg/kg streptozotocin and measured blood glucose level after 14 days to confirm DM. Bladder smooth muscle contraction was induced using acetylcholine (ACh, $10^{-4}M$). The materials such as, atropine (a muscarinic receptor antagonist), U73122 (a phospholipase C inhibitor), DPCPX (an adenosine $A_1$ receptor antagonist), udenafil (a PDE5 inhibitor), prazosin (an ${\alpha}_1$-receptor antagonist), papaverine (a smooth muscle relaxant), verapamil (a calcium channel blocker), and chelerythrine (a protein kinase C inhibitor) were pre-treated in bladder smooth muscle. We found that the DM rats had lower bladder smooth muscle contractility than normal rats. When prazosin, udenafil, verapamil, and U73122 were pre-treated, there were significant differences between normal and DM rats. Taken together, it was concluded that the change of intracellular $Ca^{2+}$ release mediated by PLC/IP3 and PDE5 activity were responsible for decreased bladder smooth muscle contractility in DM rats.
Keywords
Bladder; Contractility; Diabetes; Smooth muscle; PLC;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tong, Y. C., Chin, W. T. and Cheng, J. T. (1999) Alterations in urinary bladder M2-muscarinic receptor protein and mRNA in 2-week streptozotocin-induced diabetic rats. Neurosci. Lett. 277, 173-176.   DOI
2 Tuttle, K. R., Bakris, G. L., Bilous, R. W., Chiang, J. L., de Boer, I. H., Goldstein-Fuchs, J., Hirsch, I. B., Kalantar-Zadeh, K., Narva, A. S., Navaneethan, S. D., Neumiller, J. J., Patel, U. D., Ratner, R. E., Whaley-Connell, A. T. and Molitch, M. E. (2014) Diabetic kidney disease: a report from an ADA Consensus Conference. Am. J. Kidney Dis. 64, 510-533.   DOI
3 Van Den Eeden, S. K., Sarma, A. V., Rutledge, B. N., Cleary, P. A., Kusek, J. W., Nyberg, L. M., McVary, K. T. and Wessells, H. (2009) Effect of intensive glycemic control and diabetes complications on lower urinary tract symptoms in men with type 1 diabetes: Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study. Diabetes Care 32, 664-670.   DOI
4 Vesela, R., Aronsson, P. and Tobin, G. (2011) Functional and morphological examinations of P1A1 purinoceptors in the normal and inflamed urinary bladder of the rat. Auton. Neurosci. 159, 26-31.   DOI
5 Wang, P., Luthin, G. R. and Ruggieri, M. R. (1995) Muscarinic acetylcholine receptor subtypes mediating urinary bladder contractility and coupling to GTP binding proteins. J. Pharmacol. Exp. Ther. 273, 959-966.
6 Waring, J. V. and Wendt, I. R. (2000) Effects of streptozotocin-induced diabetes mellitus on intracellular calcium and contraction of longitudinal smooth muscle from rat urinary bladder. J. Urol. 163, 323-330.   DOI
7 Weissman, A. J. (2006) Intensive diabetes treatment and cardiovascular disease. N. Engl. J. Med. 354, 1751-1752; author reply 1751-1752.   DOI
8 Somlyo, A. P. and Somlyo, A. V. (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev. 83, 1325-1358.   DOI
9 Yu, W., Zacharia, L. C., Jackson, E. K. and Apodaca, G. (2006) Adenosine receptor expression and function in bladder uroepithelium. Am. J. Physiol. Cell Physiol. 291, C254-C265.   DOI
10 Zhu, X., Zhai, K., Mi, Y. and Ji, G. (2017) Expression and function of phosphodiesterases (PDEs) in the rat urinary bladder. BMC Urol. 17, 54.   DOI
11 Artim, D. E., Kullmann, F. A., Daugherty, .S. L., Wu, H. Y. and de Groat, W. C. (2009) Activation of the nitric oxide-cGMP pathway reduces phasic contractions in neonatal rat bladder strips via protein kinase G. Am. J. Physiol. Renal. Physiol. 297, F333-F340.   DOI
12 Adela, R., Nethi, S. K., Bagul, P. K., Barui, A. K., Mattapally, S., Kuncha, M., Patra, C. R., Reddy, P. N. and Banerjee, S. K. (2015) Hyperglycaemia enhances nitric oxide production in diabetes: a study from South Indian patients. PLoS ONE 10, e0125270.   DOI
13 Amaral, N. and Okonko, D. O. (2015) Metabolic abnormalities of the heart in type II diabetes. Diab. Vasc. Dis. Res. 12, 239-248.   DOI
14 Andersson, K. E. and Arner, A. (2004) Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol. Rev. 84, 935-986.   DOI
15 Belis, J. A., Curley, R. M., Wagner, C. H., Murty, V. N., Winter, S. J. and Rohner, T. J., Jr. (1991) Neurogenic function of the diabetic rat bladder: alteration by calcium channel effectors. Pharmacology 43, 273-281.   DOI
16 Bradley, W. E. (1980) Diagnosis of urinary bladder dysfunction in diabetes mellitus. Ann. Intern. Med. 92, 323-326.   DOI
17 Diederichs, W. (1991) Effects of papaverine on tension and 45Ca-uptake in isolated urinary bladder. Urol. Res. 19, 313-317.   DOI
18 Braverman, A. S., Tibb, A. S. and Ruggieri, M. R., Sr. (2006) M2 and M3 muscarinic receptor activation of urinary bladder contractile signal transduction. I. Normal rat bladder. J. Pharmacol. Exp. Ther. 316, 869-874.   DOI
19 Bucheimer, R. E. and Linden, J. (2004) Purinergic regulation of epithelial transport. J. Physiol. 555, 311-321.   DOI
20 Daneshgari, F., Liu, G. and Imrey, P. B. (2006) Time dependent changes in diabetic cystopathy in rats include compensated and decompensated bladder function. J. Urol. 176, 380-386.   DOI
21 Huddart, H., Langton, P. D. and Saad, K. H. (1984) Inhibition by papaverine of calcium movements and tension in the smooth muscles of rat vas deferens and urinary bladder. J. Physiol. 349, 183-194.   DOI
22 Dombkowski, R. A., Doellman, M. M., Head, S. K. and Olson, K. R. (2006) Hydrogen sulfide mediates hypoxia-induced relaxation of trout urinary bladder smooth muscle. J. Exp. Biol. 209, 3234-3240.   DOI
23 Ferrari, M. (1974) Effects of papaverine on smooth muscle and their mechanisms. Pharmacol. Res. Commun. 6, 97-115.   DOI
24 Golbidi, S. and Laher, I. (2010) Bladder dysfunction in diabetes mellitus. Front. Pharmacol. 1, 136.   DOI
25 Iltis, I., Kober, F., Desrois, M., Dalmasso, C., Lan, C., Portha, B., Cozzone, P. J. and Bernard, M. (2005) Defective myocardial blood flow and altered function of the left ventricle in type 2 diabetic rats: a noninvasive in vivo study using perfusion and cine magnetic resonance imaging. Invest. Radiol. 40, 19-26.   DOI
26 Kaplan, S. A., Te, A. E. and Blaivas, J. G. (1995) Urodynamic findings in patients with diabetic cystopathy. J. Urol. 153, 342-344.   DOI
27 Inoue, R. and Brading, A. F. (1990) The properties of the ATP-induced depolarization and current in single cells isolated from the guineapig urinary bladder. Br. J. Pharmacol. 100, 619-625.   DOI
28 Ioanid, C. P., Noica, N. and Pop, T. (1981) Incidence and diagnostic aspects of the bladder disorders in diabetics. Eur. Urol. 7, 211-214.   DOI
29 Johansson, R., Pandita, R. K., Poljakovic, M., Garcia-Pascual, A., De Vente, J. and Persson, K. (2002) Activity and expression of nitric oxide synthase in the hypertrophied rat bladder and the effect of nitric oxide on bladder smooth muscle growth. J. Urol. 168, 2689-2694.   DOI
30 Kim, S. J., Park, J. H., Song, D. K., Park, K. S., Lee, J. E., Kim, E. S., Cho, K. B., Jang, B. K., Chung, W. J., Hwang, J. S., Kwon, J. G. and Kim, T. W. (2011) Alterations of colonic contractility in long-term diabetic rat model. J. Neurogastroenterol. Motil. 17, 372-380.   DOI
31 Kudlacz, E. M., Gerald, M. C. and Wallace, L. J. (1989) Effects of diabetes and diuresis on contraction and relaxation mechanisms in rat urinary bladder. Diabetes 38, 278-284.   DOI
32 Kullmann, F. A., Downs, T. R., Artim, D. E., Limberg, B. J., Shah, M., Contract, D., de Groat, W. C. and Rosenbaum, J. S. (2011) Urothelial beta-3 adrenergic receptors in the rat bladder. Neurourol. Urodyn. 30, 144-150.   DOI
33 Martinson, E. A., Johnson, R. A. and Wells, J. N. (1987) Potent adenosine receptor antagonists that are selective for the A1 receptor subtype. Mol. Pharmacol. 31, 247-252.
34 Levy, J., Gavin, J. R., 3rd and Sowers, J. R. (1994) Diabetes mellitus: a disease of abnormal cellular calcium metabolism? Am. J. Med. 96, 260-273.   DOI
35 Lohse, M. J., Klotz, K.N., Lindenborn-Fotinos, J., Reddington, M., Schwabe, U. and Olsson, R. A. (1987) 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX)--a selective high affinity antagonist radioligand for A1 adenosine receptors. Naunyn Schmiedebergs Arch. Pharmacol. 336, 204-210.   DOI
36 Longhurst, P. A. and Belis, J. A. (1986) Abnormalities of rat bladder contractility in streptozotocin-induced diabetes mellitus. J. Pharmacol. Exp. Ther. 238, 773-777.
37 Matsumoto, S., Hanai, T. and Uemura, H. (2010) Chronic treatment with a PDE5 inhibitor increases contractile force of normal bladder in rats. Int. Urol. Nephrol. 42, 53-56.   DOI
38 Michel, M. C. and Vrydag, W. (2006) Alpha1-, alpha2- and beta-adrenoceptors in the urinary bladder, urethra and prostate. Br. J. Pharmacol. 147, S88-S119.   DOI
39 Patacchini, R., Santicioli, P., Giuliani, S. and Maggi, C. A. (2005) Pharmacological investigation of hydrogen sulfide (H2S) contractile activity in rat detrusor muscle. Eur. J. Pharmacol. 509, 171-177.   DOI
40 Patacchini, R., Santicioli, P., Giuliani, S. and Maggi, C. A. (2004) Hydrogen sulfide (H2S) stimulates capsaicin-sensitive primary afferent neurons in the rat urinary bladder. Br. J. Pharmacol. 142, 31-34.   DOI
41 Rybalkin, S. D., Yan, C., Bornfeldt, K. E. and Beavo, J. A. (2003) Cyclic GMP phosphodiesterases and regulation of smooth muscle function. Circ. Res. 93, 280-291.   DOI
42 Pecoits-Filho, R., Abensur, H., Betonico, C. C., Machado, A. D., Parente, E. B., Queiroz, M., Salles, J. E., Titan, S. and Vencio, S. (2016) Interactions between kidney disease and diabetes: dangerous liaisons. Diabetol. Metab. Syndr. 8, 50.   DOI
43 Poladia, D. P. and Bauer, J. A. (2003) Early cell-specific changes in nitric oxide synthases, reactive nitrogen species formation, and ubiquitinylation during diabetes-related bladder remodeling. Diabetes Metab. Res. Rev. 19, 313-319.   DOI
44 Rizos, C. V., Kei, A. and Elisaf, M. S. (2016) The current role of thiazolidinediones in diabetes management. Arch. Toxicol. 90, 1861-1881.   DOI
45 Sam, P. and LaGrange, C. A. (2018) Anatomy, Pelvis, Bladder, Muscles, Detrusor. StatPearls, Treasure Island (FL).
46 Sand, C. and Michel, M. C. (2014) Bradykinin contracts rat urinary bladder largely independently of phospholipase C. J. Pharmacol. Exp. Ther. 348, 25-31.   DOI
47 Schulte, G. and Fredholm, B. B. (2003) Signalling from adenosine receptors to mitogen-activated protein kinases. Cell. Signal. 15, 813-827.   DOI