DOI QR코드

DOI QR Code

Asunaprevir, a Potent Hepatitis C Virus Protease Inhibitor, Blocks SARS-CoV-2 Propagation

  • Lim, Yun-Sook (Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University) ;
  • Nguyen, Lap P. (Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University) ;
  • Lee, Gun-Hee (Korea Zoonosis Research Institute, Jeonbuk National University) ;
  • Lee, Sung-Geun (Korea Zoonosis Research Institute, Jeonbuk National University) ;
  • Lyoo, Kwang-Soo (Korea Zoonosis Research Institute, Jeonbuk National University) ;
  • Kim, Bumseok (College of Veterinary Medicine, Jeonbuk National University) ;
  • Hwang, Soon B. (Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University)
  • Received : 2021.03.29
  • Accepted : 2021.07.20
  • Published : 2021.09.30

Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has become a global health concern. Various SARS-CoV-2 vaccines have been developed and are being used for vaccination worldwide. However, no therapeutic agents against coronavirus disease 2019 (COVID-19) have been developed so far; therefore, new therapeutic agents are urgently needed. In the present study, we evaluated several hepatitis C virus direct-acting antivirals as potential candidates for drug repurposing against COVID-19. Theses include asunaprevir (a protease inhibitor), daclatasvir (an NS5A inhibitor), and sofosbuvir (an RNA polymerase inhibitor). We found that asunaprevir, but not sofosbuvir and daclatasvir, markedly inhibited SARS-CoV-2-induced cytopathic effects in Vero E6 cells. Both RNA and protein levels of SARS-CoV-2 were significantly decreased by treatment with asunaprevir. Moreover, asunaprevir profoundly decreased virion release from SARS-CoV-2-infected cells. A pseudoparticle entry assay revealed that asunaprevir blocked SARS-CoV-2 infection at the binding step of the viral life cycle. Furthermore, asunaprevir inhibited SARS-CoV-2 propagation in human lung Calu-3 cells. Collectively, we found that asunaprevir displays broad-spectrum antiviral activity and therefore might be worth developing as a new drug repurposing candidate for COVID-19.

Keywords

Acknowledgement

The pathogen resources (NCC43331) for this study were provided by the National Culture Collection for Pathogens. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2021R1A2C2003275). This work, including the efforts of Yun-Sook Lim, was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2019R1A2C1086914).

References

  1. Agostini, M.L., Andres, E.L., Sims, A.C., Graham, R.L., Sheahan, T.P., Lu, X., Smith, E.C., Case, J.B., Feng, J.Y., Jordan, R., et al. (2018). Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio 9, e00221-18.
  2. Choi, J.W., Kim, J.W., Nguyen, L.P., Nguyen, H.C., Park, E.M., Choi, D.H., Han, K.M., Kang, S.M., Tark, D., Lim, Y.S., et al. (2020). Nonstructural NS5A protein regulates LIM and SH3 domain protein 1 to promote hepatitis C virus propagation. Mol. Cells 43, 469-478. https://doi.org/10.14348/molcells.2020.0018
  3. Chu, D.K.W., Pan, Y., Cheng, S.M.S., Hui, K.P.Y., Krishnan, P., Liu, Y., Ng, D.Y.M., Wan, C.K.C., Yang, P., Wang, Q., et al. (2020). Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin. Chem. 66, 549-555. https://doi.org/10.1093/clinchem/hvaa029
  4. Ciotti, M., Angeletti, S., Minieri, M., Giovannetti, M., Benvenuto, D., Pascarella, S., Sagnelli, C., Bianchi, M., Bernardini, S., and Ciccozzi M. (2019). COVID-19 outbreak: an overview. Chemotherapy 64, 215-223. https://doi.org/10.1159/000507423
  5. Coleman, C.M. and Frieman, M.B. (2014). Coronaviruses: important emerging human pathogens. J. Virol. 88, 5209-5212. https://doi.org/10.1128/JVI.03488-13
  6. Corbett, K.S., Flynn, B., Foulds, K.E., Francica, J.R., Boyoglu-Barnum, S., Werner, A.P., Flach, B., O'Connell, S., Bock, K.W., Minai, M., et al. (2020). Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N. Engl. J. Med. 383, 1544-1555. https://doi.org/10.1056/NEJMoa2024671
  7. Cui, J., Li, F., and Shi, Z.L. (2019). Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181-192. https://doi.org/10.1038/s41579-018-0118-9
  8. Duan, L., Zheng, Q., Zhang, H., Niu, Y., Lou, Y., and Wang, H. (2020). The SARS-CoV-2 spike glycoprotein biosynthesis, structure, function, and antigenicity: implications for the design of spike-based vaccine immunogens. Front. Immunol. 11, 576622. https://doi.org/10.3389/fimmu.2020.576622
  9. Gane, E.J., Stedman, C.A., Hyland, R.H., Ding, X., Svarovskaia, E., Symonds, W.T., Hindes, R.G., and Berrey, M.M. (2013). Nucleotide polymerase inhibitor sofosbuvir plus ribavirin for hepatitis C. N. Engl. J. Med. 368, 34-44. https://doi.org/10.1056/NEJMoa1208953
  10. Gao, M., Nettles, R.E., Belema, M., Snyder, L.B., Nguyen, V.N., Fridell, R.A., Serrano-Wu, M.H., Langley, D.R., Sun, J.H., O'Boyle, D.R., 2nd, et al. (2010). Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature 465, 96-100. https://doi.org/10.1038/nature08960
  11. Ghahremanpour, M.M., Tirado-Rives, J., Deshmukh, M., Ippolito, J.A., Zhang, C.H., de Vaca, I.C., Liosi, M.E., Anderson, K.S., and Jorgensen, W.L. (2020). Identification of 14 known drugs as inhibitors of the main protease of SARS-CoV-2. ACS Med. Chem. Lett. 11, 2526-2533. https://doi.org/10.1021/acsmedchemlett.0c00521
  12. Grein, J., Ohmagari, N., Shin, D., Diaz, G., Asperges, E., Castagna, A., Feldt, T., Green, G., Green, M.L., Lescure, F.X., et al. (2020). Compassionate use of remdesivir for patients with severe Covid-19. N. Engl. J. Med. 382, 2327-2336. https://doi.org/10.1056/NEJMoa2007016
  13. Guy, R.K., Dipaola, R.S., Romanelli, F., and Dutch, R.E. (2020). Rapid repurposing of drugs for COVID-19. Science 368, 829-830. https://doi.org/10.1126/science.abb9332
  14. Hassan, A.O., Kafai, N.M., Dmitriev, I.P., Fox, J.M., Smith, B.K., Harvey, I.B., Chen, R.E., Winkler, E.S., Wessel, A.W., Case, J.B., et al. (2020). A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell 183, 169-184.e13. https://doi.org/10.1016/j.cell.2020.08.026
  15. Law, G.L., Tisoncik-Go, J., Korth, M.J., and Katze, M.G. (2013). Drug repurposing: a better approach for infectious disease drug discovery? Curr. Opin. Immunol. 25, 588-592. https://doi.org/10.1016/j.coi.2013.08.004
  16. Lefkowitz, E.J., Dempsey, D.M., Hendrickson, R.C., Orton, R.J., Siddell, S.G., and Smith, D.B. (2018). Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res. 46(D1), D708-D717. https://doi.org/10.1093/nar/gkx932
  17. Lim, Y.S. and Hwang, S.B. (2011). Hepatitis C virus NS5A protein interacts with phosphatidylinositol 4-kinase type IIIalpha and regulates viral propagation. J. Biol. Chem. 286, 11290-11298. https://doi.org/10.1074/jbc.M110.194472
  18. Lim, Y.S., Mai, H.N., Nguyen, L.P., Kang, S.M., Tark, D., and Hwang, S.B. (2021). Adenosylhomocysteinase like 1 interacts with nonstructural 5A and regulates hepatitis C virus propagation. J. Microbiol. 59, 101-109. https://doi.org/10.1007/s12275-021-0470-8
  19. Lim, Y.S., Tran, H.T., Park, S.J., Yim, S.A., and Hwang, S.B. (2011). Peptidylprolyl isomerase Pin1 is a cellular factor required for hepatitis C virus propagation. J. Virol. 85, 8777-8788. https://doi.org/10.1128/JVI.02533-10
  20. Lok, A.S., Gardiner, D.F., Lawitz, E., Martorell, C., Everson, G.T., Ghalib, R., Reindollar, R., Rustgi, V., McPhee, F., Wind-Rotolo, M., et al. (2012). Preliminary study of two antiviral agents for hepatitis C genotype 1. N. Engl. J. Med. 366, 216-224. https://doi.org/10.1056/NEJMoa1104430
  21. Machhi, J., Herskovitz, J., Senan, A.M., Dutta, D., Nath, B., Oleynikov, M.D., Blomberg, W.R., Meigs, D.D., Hasan, M., Patel, M., et al. (2020). The natural history, pathobiology, and clinical manifestations of SARS-CoV-2 infections. J. Neuroimmune Pharmacol. 15, 359-386. https://doi.org/10.1007/s11481-020-09944-5
  22. Manfredonia, I. and Incarnato, D. (2021). Structure and regulation of coronavirus genomes: state-of-the-art and novel insights from SARS-CoV-2 studies. Biochem. Soc. Trans. 49, 341-352. https://doi.org/10.1042/BST20200670
  23. Matsuyama, S., Nagata, N., Shirato, K., Kawase, M., Takeda, M., and Taguchi, F. (2010). Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J. Virol. 84, 12658-12664. https://doi.org/10.1128/JVI.01542-10
  24. Mulligan, M.J., Lyke, K.E., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Neuzil, K., Raabe, V., Bailey, R., Swanson, K.A., et al. (2020). Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 586, 589-593. https://doi.org/10.1038/s41586-020-2639-4
  25. Murakami, E., Tolstykh, T., Bao, H., Niu, C., Steuer, H.M., Bao, D., Chang, W., Espiritu, C., Bansal, S., Lam, A.M., et al. (2010). Mechanism of activation of PSI-7851 and its diastereoisomer PSI-7977. J. Biol. Chem. 285, 34337-34347. https://doi.org/10.1074/jbc.M110.161802
  26. Nettles, R.E., Gao, M., Bifano, M., Chung, E., Persson, A., Marbury, T.C., Goldwater, R., DeMicco, M.P., Rodriguez-Torres, M., Vutikullird, A., et al. (2011). Multiple ascending dose study of BMS-790052, a nonstructural protein 5A replication complex inhibitor, in patients infected with hepatitis C virus genotype 1. Hepatology 54, 1956-1965. https://doi.org/10.1002/hep.24609
  27. Park, C., Min, S., Park, E.M., Lim, Y.S., Kang, S., Suzuki, T., Shin, E.C., and Hwang, S.B. (2015). Pim kinase interacts with nonstructural 5A protein and regulates hepatitis C virus entry. J. Virol. 89, 10073-10086. https://doi.org/10.1128/JVI.01707-15
  28. Reed, L.J. and Muench, H. (1938). A simple method of estimating fifty percent endpoints. Am. J. Hyg. 27, 493-497.
  29. Sheahan, T.P., Sims, A.C., Graham, R.L., Menachery, V.D., Gralinski, L.E., Case, J.B., Leist, S.R., Pyrc, K., Feng, J.Y., Trantcheva, I., et al. (2017). Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med. 9, eaal3653. https://doi.org/10.1126/scitranslmed.aal3653
  30. Soumana, D.I., Ali, A., and Schiffer, C.A. (2014). Structural analysis of asunaprevir resistance in HCV NS3/4A protease. ACS Chem. Biol. 9, 2485-2490. https://doi.org/10.1021/cb5006118
  31. Suzuki, Y., Ikeda, K., Suzuki, F., Toyota, J., Karino, Y., Chayama, K., Kawakami, Y., Ishikawa, H., Watanabe, H., Hu, W., et al. (2013). Dual oral therapy with daclatasvir and asunaprevir for patients with HCV genotype 1b infection and limited treatment options. J. Hepatol. 58, 655-662. https://doi.org/10.1016/j.jhep.2012.09.037
  32. Trivedi, J., Mohan, M., and Byrareddy, S.N. (2020). Drug repurposing approaches to combating viral infections. J. Clin. Med. 9, 3777. https://doi.org/10.3390/jcm9113777
  33. Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K.Y., et al. (2020). Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 181, 894-904.e9. https://doi.org/10.1016/j.cell.2020.03.045
  34. Warren, T.K., Jordan, R., Lo, M.K., Ray, A.S., Mackman, R.L., Soloveva, V., Siegel, D., Perron, M., Bannister, R., Hui, H.C., et al. (2016). Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 531, 381-385. https://doi.org/10.1038/nature17180
  35. Woo, P.C., Huang, Y., Lau, S.K., and Yuen, K.Y. (2010). Coronavirus genomics and bioinformatics analysis. Viruses 2, 1804-1820. https://doi.org/10.3390/v2081803
  36. World Health Organization (2020). Coronavirus disease (COVID-19) situation reports. Retrieved December 8, 2020, from https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/
  37. Yousefi, H., Mashouri, L., Okpechi, S.C., Alahari, N., and Alahari, S.K. (2021). Repurposing existing drugs for the treatment of COVID-19/SARS-CoV-2 infection: a review describing drug mechanisms of action. Biochem. Pharmacol. 183, 114296. https://doi.org/10.1016/j.bcp.2020.114296
  38. Zhou, Y., Wang, F., Tang, J., Nussinov, R., and Cheng, F. (2020). Artificial intelligence in COVID-19 drug repurposing. Lancet Digit. Health 2, e667-e676. https://doi.org/10.1016/S2589-7500(20)30192-8