• Title/Summary/Keyword: prime ideal

Search Result 285, Processing Time 0.02 seconds

EXTENSIONS OF NAGATA'S THEOREM

  • Hamed, Ahmed
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.797-808
    • /
    • 2018
  • In [1], the authors generalize the concept of the class group of an integral domain $D(Cl_t(D))$ by introducing the notion of the S-class group of an integral domain where S is a multiplicative subset of D. The S-class group of D, $S-Cl_t(D)$, is the group of fractional t-invertible t-ideals of D under the t-multiplication modulo its subgroup of S-principal t-invertible t-ideals of D. In this paper we study when $S-Cl_t(D){\simeq}S-Cl_t(D_T)$, where T is a multiplicative subset generated by prime elements of D. We show that if D is a Mori domain, T a multiplicative subset generated by prime elements of D and S a multiplicative subset of D, then the natural homomorphism $S-Cl_t(D){\rightarrow}S-Cl_t(D_T)$ is an isomorphism. In particular, we give an S-version of Nagata's Theorem [13]: Let D be a Krull domain, T a multiplicative subset generated by prime elements of D and S another multiplicative subset of D. If $D_T$ is an S-factorial domain, then D is an S-factorial domain.

ON THE IDEAL CLASS GROUPS OF ℤp-EXTENSIONS OVER REAL ABELIAN FIELDS

  • Kim, Jae Moon;Ryu, Ja Do
    • Korean Journal of Mathematics
    • /
    • v.7 no.2
    • /
    • pp.227-233
    • /
    • 1999
  • Let $k$ be a real abelian field and $k_{\infty}={\bigcup}_{n{\geq}0}k_n$ be its $\mathbb{Z}_p$-extension for an odd prime $p$. For each $n{\geq}0$, we denote the class number of $k_n$ by $h_n$. The following is a well known theorem: Theorem. Suppose $p$ remains inert in $k$ and the prime ideal of $k$ above $p$ totally ramifies in $k_{\infty}$. Then $p{\nmid}h_0$ if and only if $p{\nmid}h_n$ for all $n{\geq}0$. The aim of this paper is to generalize above theorem: Theorem 1. Suppose $H^1(G_n,E_n){\simeq}(\mathbb{Z}/p^n\mathbb{Z})^l$, where $l$ is the number of prime ideals of $k$ above $p$. Then $p{\nmid}h_0$ if and only if $p{\nmid}h_n$. Theorem 2. Let $k$ be a real quadratic field. Suppose that $H^1(G_1,E_1){\simeq}(\mathbb{Z}/p\mathbb{Z})^l$. Then $p{\nmid}h_0$ if and only if $p{\nmid}h_n$ for all $n{\geq}0$.

  • PDF

FUZZY IDEALS IN NEAR-RINGS

  • Hong, Sung-Min;Jun, Young-Bae;Kim, Hee-Sik
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.455-464
    • /
    • 1998
  • In this paper, we give another proof of Theorem 2.13 of [4] without using the sup property. For the homomorphic image $f(\mu)$ and preimage $f^{-1}(\nu)$ of fuzzy left (resp. right) ideals $\mu$ and $\nu$ respectively, we establish the chains of level left (resp. right) ideals of $f(\mu)$ and $f^{-1}(\nu)$, respectively. Moreover, we prove that a necessary condition for a fuzzy ideal $\mu$ of a near-ring $R$ to be prime is that $\mu$ is two-valued.

  • PDF

GENERALIZED DERIVATIONS ON SEMIPRIME RINGS

  • De Filippis, Vincenzo;Huang, Shuliang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1253-1259
    • /
    • 2011
  • Let R be a prime ring, I a nonzero ideal of R and n a fixed positive integer. If R admits a generalized derivation F associated with a derivation d such that c for all x, $y{\in}I$. Then either R is commutative or n = 1, d = 0 and F is the identity map on R. Moreover in case R is a semiprime ring and $(F([x,\;y]))^n=[x,\;y]$ for all x, $y{\in}R$, then either R is commutative or n = 1, $d(R){\subseteq}Z(R)$, R contains a non-zero central ideal and for all $x{\in}R$.

AN IDEAL - BASED ZERO-DIVISOR GRAPH OF POSETS

  • Elavarasan, Balasubramanian;Porselvi, Kasi
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.1
    • /
    • pp.79-85
    • /
    • 2013
  • The structure of a poset P with smallest element 0 is looked at from two view points. Firstly, with respect to the Zariski topology, it is shown that Spec(P), the set of all prime semi-ideals of P, is a compact space and Max(P), the set of all maximal semi-ideals of P, is a compact $T_1$ subspace. Various other topological properties are derived. Secondly, we study the semi-ideal-based zero-divisor graph structure of poset P, denoted by $G_I$ (P), and characterize its diameter.

A NATURAL MAP ON AN ORE EXTENSION

  • Cho, Eun-Hee;Oh, Sei-Qwon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.47-52
    • /
    • 2018
  • Let ${\delta}$ be a derivation in a noetherian integral domain A. It is shown that a natural map induces a homeomorphism between the spectrum of $A[z;{\delta}]$ and the Poisson spectrum of $A[z;{\delta}]_p$ such that its restriction to the primitive spectrum of $A[z;{\delta}]$ is also a homeomorphism onto the Poisson primitive spectrum of $A[z;{\delta}]_p$.

Variants of Compactness in Pointfree Topology

  • Banaschewski, Bernhard;Hong, Sung Sa
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.4
    • /
    • pp.455-470
    • /
    • 2005
  • This paper introduces compactness notions for frames which are expressed in terms of the convergence of suitably specified general filters. It establishes several preservation properties for them as well as their coreflectiveness in the setting of regular frames. Further, it shows that supercompact, compact, and $Lindel{\ddot{o}}f$ frames can be described by compactness conditions of the present form so that various familiar facts become consequences of these general results. In addition, the Prime Ideal Theorem and the Axiom of Countable Choice are proved to be equivalent to certain conditions connected with the kind of compactness considered here.

  • PDF

RELATIONSHIP BETWEEN THE STRUCTURE OF A QUOTIENT RING AND THE BEHAVIOR OF CERTAIN ADDITIVE MAPPINGS

  • Bouchannafa, Karim;Idrissi, Moulay Abdallah;Oukhtite, Lahcen
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.359-370
    • /
    • 2022
  • The principal aim of this paper is to study the connection between the structure of a quotient ring R/P and the behavior of special additive mappings of R. More precisely, we characterize the commutativity of R/P using derivations (generalized derivations) of R satisfying algebraic identities involving the prime ideal P. Furthermore, we provide examples to show that the various restrictions imposed in the hypothesis of our theorems are not superfluous.

POSNER'S THEOREM FOR GENERALIZED DERIVATIONS ASSOCIATED WITH A MULTIPLICATIVE DERIVATION

  • UZMA NAAZ;MALIK RASHID JAMAL
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.3
    • /
    • pp.539-548
    • /
    • 2024
  • Let R be a ring and P be a prime ideal of R. A mapping d : R → R is called a multiplicative derivation if d(xy) = d(x)y + xd(y) for all x, y ∈ R. In this paper, our main motive is to obtain the well-known theorem due to Posner in the ring R/P for generalized derivations associated with a multiplicative derivation defined by an additive mapping F : R → R such that F(xy) = F(x)y + xd(y), where d : R → R is a multiplicative derivation not necessarily additive. This article discusses the use of generalized derivations associated with a multiplicative derivation to investigate the commutativity of the quotient ring R/P.

COVERING AND INTERSECTION CONDITIONS FOR PRIME IDEALS

  • Chang, Gyu Whan;Hwang, Chul Ju
    • Korean Journal of Mathematics
    • /
    • v.17 no.1
    • /
    • pp.15-23
    • /
    • 2009
  • Let D be an integral domain, P be a nonzero prime ideal of D, $\{P_{\alpha}{\mid}{\alpha}{\in}{\mathcal{A}}\}$ be a nonempty set of prime ideals of D, and $\{I_{\beta}{\mid}{\beta}{\in}{\mathcal{B}}\}$ be a nonempty family of ideals of D with ${\cap}_{{\beta}{\in}{\mathcal{B}}}I_{\beta}{\neq}(0)$. Consider the following conditions: (i) If $P{\subseteq}{\cup}_{{\alpha}{\in}{\mathcal{A}}}P_{\alpha}$, then $P=P_{\alpha}$ for some ${\alpha}{\in}{\mathcal{A}}$; (ii) If ${\cap}_{{\beta}{\in}{\mathcal{B}}}I_{\beta}{\subseteq}P$, then $I_{\beta}{\subseteq}P$ for some ${\beta}{\in}{\mathcal{B}}$. In this paper, we prove that D satisfies $(i){\Leftrightarrow}D$ is a generalized weakly factorial domain of ${\dim}(D)=1{\Rightarrow}D$ satisfies $(ii){\Leftrightarrow}D$ is a weakly Krull domain of dim(D) = 1. We also study the t-operation analogs of (i) and (ii).

  • PDF