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EXTENSIONS OF NAGATA’S THEOREM

Ahmed Hamed

Abstract. In [1], the authors generalize the concept of the class group

of an integral domain D (Clt(D)) by introducing the notion of the S-class
group of an integral domain where S is a multiplicative subset of D. The

S-class group of D, S-Clt(D), is the group of fractional t-invertible t-

ideals of D under the t-multiplication modulo its subgroup of S-principal
t-invertible t-ideals of D. In this paper we study when S-Clt(D) ' S-

Clt(DT ), where T is a multiplicative subset generated by prime elements

of D. We show that if D is a Mori domain, T a multiplicative subset
generated by prime elements of D and S a multiplicative subset of D, then

the natural homomorphism S-Clt(D) → S-Clt(DT ) is an isomorphism.
In particular, we give an S-version of Nagata’s Theorem [13]: Let D be

a Krull domain, T a multiplicative subset generated by prime elements

of D and S another multiplicative subset of D. If DT is an S-factorial
domain, then D is an S-factorial domain.

1. Introduction

Let D be an integral domain with quotient field K. Let F(D) be the set of
nonzero fractional ideals of D. For an I ∈ F(D), set I−1 = {x ∈ K/ xI ⊆
D}. The mapping on F(D) defined by I 7→ Iυ = (I−1)−1 is called the υ-
operation on D. A nonzero fractional ideal I is said to be a υ-ideal or divisorial
if I = Iυ, and I is said to be υ-invertible if (II−1)υ = D. For properties of
the υ-operation the reader is referred to [11, Section 34]. However, we will be
mostly interested in the t-operation defined on F(D) by I 7→ It =

⋃
{Jυ, J

is a nonzero finitely generated fractional subideal of I}. (For properties of the
t-operation the reader may consult [2].) A fractional ideal I is called a t-ideal
if I = It. A t-ideal (respectively, υ-ideal) I has t- (respectively, υ-) finite type if
I = Jt (respectively, I = Jυ) for some finitely generated fractional ideal J of D.
The set of υ-ideals may be a proper subset of the set of t-ideals. A fractional
ideal I is said to be t-invertible if (II−1)t = D. If I is t-invertible, then It
and I−1 are υ-ideals of finite type. The set T (D) of t-invertible fractional
t-ideals of D is a group under the t-multiplication I ? J := (IJ)t, and the
set P (D) of nonzero principal fractional ideals of D is a subgroup of T (D).
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Following [5], we define the class group of D, denoted by Clt(D), to be the
group of t-invertible fractional t-ideals of D under the t-multiplication modulo
its subgroup of principal fractional ideals, that is, Clt(D) = T (D)/P (D). The
t-class group of an integral domain was studied by many authors ([2], [5] and
[6]).

Let D be an integral domain and S a multiplicative subset of D generated by
prime elements of D. Many authors have studied when the natural homomor-
phism Clt(D)→ Clt(DS) induced by [I]→ [IS ] for I ∈ T (D) is an isomorphism
([7], [10], and [13]). In [13], Nagata show that if D is a Krull domain and S
a multiplicatively closed subset of D generated by principal prime elements of
D, then Clt(D) → Clt(DS) is an isomorphism. So by Nagata’s Theorem we
have the following result: Let D be a Krull domain and S a multiplicatively
closed subset of D generated by principal primes of D. If DS is a factorial do-
main, then D is a factorial domain [9, Corollary 7.3]. Later, S. Gabelli and M.
Roitman generalize the Nagata’s Theorem by relaxing the Krull assumption,
they showed that, if D satisfies the ACCP (ascending chain condition on prin-
cipal ideals) and T a multiplicatively closed subset of D generated by principal
primes of D, then Clt(D) → Clt(DT ) is an isomorphism [10]. Also, in [7], El
Abidine gave another class of domains D such that the natural homomorphism
Clt(D) → Clt(DT ) is an isomorphism. First let us recall that an integral do-
main D is said to be a Prufer v-multiplication domain (PVMD) if every finitely
generated I ∈ F(D) is t-invertible. According to [7], an integral domain D sat-
isfies (∗) if for any finitely generated ideal I of D, I−1 is of υ-finite type. For
examples, Mori domains, PVMD’s satisfy (∗). In [7], the author showed that if
D is an integral domain satisfying (∗) and T a multiplicative subset generated
by prime elements of D, then the homomorphism Clt(D) → Clt(DT ) is an
isomorphism.

On the other hand, in [1], the authors generalize the concept of the class
group of an integral domain (Clt(D)) by introducing the notion of the S-class
group of an integral domain (S-Clt(D)) where S is a multiplicative subset of D.
First, recall that from [3], an ideal I of D is said S-principal if sI ⊆ J ⊆ I, for
some principal ideal J of D and some s ∈ S. Set S-P (D) = S-Prin(D)∩T (D),
where S-Prin(D) is the set of S-principal fractional ideals ofD. Then S-P (D) is
a subgroup of T (D). The S-class group ofD, S-Clt(D), is the group of fractional
t-invertible t-ideals of D, under the t-multiplication modulo its subgroup of S-
principal t-invertible t-ideals of D, that is, S-Clt(D) = T (D)/S-P (D). Note
that if the multiplicative subset S is included in the set of units of D, then
S-Clt(D) = Clt(D). In [1], the authors showed that if D ⊆ L is an extension of
integral domains such that L is a flat D-module and S a multiplicative subset
of D, then the canonical mapping ϕ : S-Clt(D) → S-Clt(L), [I]S 7→ [IL]S is
well-defined and it is an homomorphism ([1, Theorem 4.3]). Note that if T is a
multiplicative subset of D, then DT is a flat D-module. It is then natural to try
to study when the homomorphism S-Clt(D) → S-Clt(DT ) is an isomorphism.
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In particular we give an S-version of Nagata’s Theorem and generalize some
known results about the class group of an integral domain ([7], [13]).

In this paper we prove several versions of Nagata’s Theorem and we investi-
gate when If being an S-principal ideal of Df implies that I is an S-principal
ideal of D, for a principal prime f of D, a divisorial ideal I of D, and a multi-
plicative subset S of D. Also we study some conditions to put on f or S to have
the same result. This gives us two generalizations of the main Theorems of [2],
each one is useful to use for particular domains. In this article we show that if
D is an integral domain, T a multiplicative subset generated by prime elements
of D and S a saturated multiplicative subset of D, then the homomorphism S-
Clt(D)→ S-Clt(DT ) is injective. So in the particular case when S consists of
units of D, we prove the result of D. D. Anderson and D. F. Anderson ([2, The-
orem 2.3]). Also we prove that if D is a Krull domain, T a multiplicative subset
generated by prime elements of D and S a saturated multiplicative subset of
D. Then the homomorphism ϕ : S-Clt(D) → S-Clt(DT ) is an isomorphism.
So we give an S-version of Nagata’s Theorem. Moreover, we generalize the
result of El Abidine [7], we show that if D is an integral domain satisfying (∗),
T a multiplicative subset generated by prime elements of D and S a saturated
multiplicative subset of D. Then the homomorphism S-Clt(D)→ S-Clt(DT ) is
an isomorphism. Also we prove another version of Nagata’s Theorem when the
multiplicative set S is not necessarily saturated. We show that if D is a Mori
domain, T a multiplicative subset generated by prime elements of D and S
another multiplicative subset of D. Then the homomorphism S-Clt(D) → S-
Clt(DT ) is an isomorphism. As an application of these results we have the
following characterizations of S-factorial and S-GCD properties. First let us
recall that the mapping on F(D) defined by I 7→ Iw = {x ∈ K, xJ ⊆ I for
some finitely generated ideal J of D such that Jυ = D} is a star operation on D
called the w-operation on D. Let D be an integral domain, S a multiplicative
subset of D and I a nonzero ideal of D. We say that I is an S-w-principal ideal
of D, if there exist an s ∈ S and a principal ideal J of D such that sI ⊆ J ⊆ Iw.
We also define D to be an S-factorial domain if each nonzero ideal of D is S-w-
principal [12]. We show that if D is a Krull domain, T a multiplicative subset
generated by prime elements of D and S another multiplicative subset of D,
then D is an S-factorial domain if and only if DT is an S-factorial domain.
Also if D is a PυMD, T a multiplicative subset generated by prime elements of
D and S a saturated multiplicative subset of D, then D is an S-GCD domain
if and only if DT is an S-GCD domain.

2. S-principal ideals

Let D be an integral domain and S a multiplicative subset of D. Recall from
[1] that, the S-class group of D, S-Clt(D), is the group of fractional t-invertible
t-ideals of D under the t-multiplication modulo its subgroup of S-principal t-
invertible t-ideals of D, that is, S-Clt(D) = T (D)/S-P (D). Note that if the
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multiplicative subset S is included in the set of units of D, then S-Clt(D) =
Clt(D). We denote by [I]S the equivalence class of an ideal I of D. We start
this section by the following Proposition:

Proposition 2.1. Let D be an integral domain and S a multiplicative subset
of D. If Clt(D) = 0, then S-Clt(D) = 0.

Proof. Let I be a t-invertible t-ideal of D. Since Clt(D) = 0, then [I] = 0. So
I is a principal ideal, which implies that I is S-principal. Therefore [I]S = 0.

Let D be an integral domain and S a multiplicative subset of D. Recall from
[3] that, an ideal I of D is S-principal, if sI ⊆ J ⊆ I for some s ∈ S and some
principal ideal J of D. Also we define D to be an S-Principal Ideal Domain
(S-PID), if every ideal of D is S-principal. �

Remark 2.2. The converse of Proposition 2.1 is false in general. Indeed, let D
be a Krull domain which is not factorial (For example, D = Z[i

√
5]) and let

S = D\{0}. Then D is an S-PID, which implies that S-Clt(D) = 0. But D is
a Krull domain which is not factorial, then by [5, Proposition 2], Clt(D) 6= 0.
In particular by [1, Theorem 4.1], D is an S-factorial domain which is not
factorial.

Let D be an integral domain, I an ideal of D and f an element of D. We
denote by If , the localization of the ideal I of D by the multiplicative subset
S = {fn, n ∈ N} of D. Then Theorem 1.3 of [2] can be rewritten as follows,
the proof remains practically the same.

Lemma 2.3. Let D be an integral domain with ∗ a star operation and nonzero
x1, . . . , xn ∈ D. Then the following statements are equivalent:

(1) (x1, . . . , xn)∗ = D.
(2) For ideals I,J of D, if Ixi ⊆ Jxi , i = 1, . . . , n, then I∗ ⊆ J∗.
(3) For *-ideals I,J of D, if Ixi

⊆ Jxi
, i = 1, . . . , n, then I ⊆ J .

(4) For finitely generated ideals I and J of D, if Ixi
⊆ Jxi

, i = 1, . . . , n,
then I∗ ⊆ J∗.

(5) For finite type ∗-ideals I and J of D, if Ixi ⊆ Jxi , i = 1, . . . , n, then
I ⊆ J .

Proof. (1) =⇒ (2). Let c ∈ I. Then c ∈ Ixi
⊆ Jxi

, so xNi
i c ∈ J for some

Ni. Thus for some N, (x1, . . . , xn)Nc ⊆ J. Hence c ∈ ((x1, . . . , xn)N )∗c ⊆
((x1, . . . , xn)Nc)∗ ⊆ J∗. Thus I∗ ⊆ J∗.

As (2) =⇒ (3), (2) =⇒ (4), (3) =⇒ (5) and (4) =⇒ (5) are each immediate,
we need only to prove (5) =⇒ (1). Since x1, . . . , xn ∈ D, then (x1, . . . , xn)∗ ⊆
D. Conversely, as (x1, . . . , xn)∗ and D are each finite-type *-ideals and Dxi

⊆
(x1, . . . , xn)

∗
xi

for each i = 1, . . . , n, then by (5), D ⊆ (x1, . . . , xn)∗. �

Proposition 2.4. Let D be an integral domain, S a multiplicative subset of D
and I a divisorial ideal of D. Then I is an S-principal ideal of D if and only
if I−1 is an S-principal ideal of D.
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Proof. If I is S-principal, then there exist an s ∈ S and an a ∈ I such that
sI ⊆ aD ⊆ I. Thus I−1 ⊆ 1

aD ⊆
1
sI
−1, furthermore sI−1 ⊆ s

aD ⊆ I−1.

Conversely, if there exist an s ∈ S and an α ∈ I−1 such that sI−1 ⊆ αD ⊆ I−1,
then (I−1)−1 ⊆ 1

αD ⊆
1
s (I−1)−1, so s(I−1)−1 ⊆ s

αD ⊆ (I−1)−1. Since I is a
divisorial ideal, then sI ⊆ s

αD ⊆ I, hence I is an S-principal ideal of D. �

Recall that an element f of D is said to be prime, if fD is a prime ideal of
D. In [2], the authors determine when the condition that the localization If
of a divisorial ideal I by a principal prime f is principal implies that I is also
principal. Our next Theorem give an S-version of this result [2, Theorem 2.1].

Theorem 2.5. Let D be an integral domain, S a saturated multiplicative subset
of D, I a divisorial ideal of D and f a prime element of D. Then the following
statements hold.

(1) If I is an integral ideal of D and If ∩ S 6= ∅, then I is an S-principal
ideal of D.

(2) If If is an S-principal ideal of Df and I has v-finite type, then I is an
S-principal ideal of D.

Proof. (1) Since If ∩ S 6= ∅, then there exist an n ∈ N and an s ∈ S such
that sfn ∈ I. If I 6⊆ fD, let i ∈ I \ fD. Since fD is a maximal divisorial
ideal ([9, Lemma 3.7]), then (i, f)v = D. We have (sD)f ⊆ If and (sD)i =
sDi ⊆ Di = Ii. Then by Lemma 2.3, sD = (sD)υ ⊆ Iυ. But by hypothesis I is
divisorial, then sD ⊆ I. So sI ⊆ sD ⊆ I, and hence I is S-principal.

Now if I ⊆ fD. Set F = {m ∈ N, I ⊆ fmD}, F is nonempty because 1 ∈ F.
If F is bounded, it has a maximum N ∈ N such that I ⊆ fND and I 6⊆ fN+1D.
Then f−NI ⊆ D and f−NI 6⊆ fD. Set I

′
= f−NI. Since I is divisorial and

I
′ ⊆ D, then I

′
is a divisorial integral ideal of D. Since If ∩ S 6= ∅, then

(I ′)f ∩ S 6= ∅. So by the first case applied on I
′
, there exists a t ∈ S such that

tI
′ ⊆ tD ⊆ I ′

. This implies that tI ⊆ tfND ⊆ I, and hence I is S-principal.
If F is not bounded, then we can find k ∈ N\{0} such that I ⊆ fn+kD. Since

sfn ∈ I, then sfn ∈ fn+kD, which implies that s ∈ fkD. As S is saturated,
then fk ∈ S. So f ∈ S and fn ∈ S. Hence sfn ∈ S ∩ I and consequently I is
S-principal.

(2) If I is of v-finite type, then (D : I)f = (Df : If ), (I = Jv where J is
finitely generated, we use the fact that the extension D ⊆ Df is flat and so

J−1f = (Jf )−1). Since If is S-principal, then there exist an s ∈ S and an a ∈ I
such that sIf ⊆ aDf ⊆ If , thus I−1f ⊆ 1

aDf ⊆ 1
sI
−1
f . Set J = aI−1, then J is a

divisorial integral ideal of D and Jf = aI−1f , so sJf ⊆ sDf ⊆ Jf . By (1), J is

S-principal, thus I−1 is S-principal, so by Proposition 2.4, I is S-principal. �

Let D be an integral domain and T a multiplicative subset generated by
prime elements ofD. In [2], the authors showed that the natural homomorphism
Clt(D) −→ Clt(DT ) is injective. Our next Theorem generalize this result. Let
us first recall the following fact: Hamed and Hizem in [1], showed that if D



802 A. HAMED

⊆ L is an extension of integral domains such that L is a flat D-module and
S a multiplicative subset of D, then the canonical mapping ϕ : S-Clt(D) →
S-Clt(L), [I]S 7→ [IL]S is well-defined and it is an homomorphism [1, Theorem
4.3]. Note that if T is a multiplicative subset of D, then DT is a flat D-module.

Theorem 2.6. Let D be an integral domain, T a multiplicative subset generated
by prime elements of D and S a saturated multiplicative subset of D. Then the
homomorphism S-Clt(D)→ S-Clt(DT ) is injective.

Proof. We show that for I ∈ T (D) if IT is an S-principal ideal of DT , then
I is an S-principal ideal of D. Let I ∈ T (D) such that IT is S-principal.
Since I is of v-finite type, then (D : I)T = (DT : IT ) (I = Jv where J is
finitely generated, we use the fact that the extension D ⊆ DT is flat and so
J−1T = (JT )−1). Since IT is S-principal, then there exist an s ∈ S and an

a ∈ I such that sIT ⊆ aDT ⊆ IT . Thus I−1T ⊆ 1
aDT ⊆ 1

sI
−1
T . Set J = aI−1.

Then J is a divisorial integral ideal of D, JT = aI−1T and sJT ⊆ sDT ⊆ JT . So
there exists an h ∈ T such that sh ∈ J. Write h = pα1

1 · · · pαn
n for some prime

elements p1, . . . , pn of D such that pi 6= pj for all i 6= j. Let f = p1 · · · pn and
let m = max{αi, 1 ≤ i ≤ n}. Then sfm ∈ J . Thus Jf ∩ S 6= ∅. We proceed
then by induction on n:

For n = 1, we have Jp1 ∩ S = Jf ∩ S 6= ∅. Then by Theorem 2.5(1), J is
an S-principal ideal of D. But J−1 = 1

aIv = 1
aI, so by Proposition 2.4, I is an

S-principal ideal of D.
Suppose that it remains true until the order n, we show that it holds for

n + 1 : Let f = p1 · · · pnpn+1, f1 = p1 · · · pn and R = Df1 . Then Df = Rpn+1 .
It is easy to show that Jf1 is an integral divisorial ideal of R and pn+1 is a
prime element of R. Moreover (Jf1)pn+1

∩ S = Jf ∩ S 6= ∅. Then by Theorem
2.5(1), Jf1 is an S-principal ideal of R. So by the induction hypothesis J is an
S-principal ideal of D. But J−1 = 1

aIv = 1
aI, so by Proposition 2.4, I is an

S-principal ideal of D. �

Let S be a multiplicative subset of D. If I ∈ T (D), then IS ∈ T (DS)
[6, Lemma 2.8]. Thus there is a natural homomorphism Clt(D) → Clt(DT )
induced by [I] → [IT ] for I ∈ T (D). In Theorem 2.6 if S consists of units
of D, then we can recover the result of D. D. Anderson and D. F. Anderson
[2, Theorem 2.3].

Corollary 2.7 ([2]). Let D be an integral domain, T a multiplicative subset
generated by prime elements of D. Then the homomorphism Clt(D)→ Clt(DT )
is injective.

3. On S-Nagata’s Theorem

In [13], Nagata showed that if D is a Krull domain and S a multiplicatively
closed subset of D generated by prime elements of D, then the natural homo-
morphism Clt(D) → Clt(DS) is an isomorphism. In this section we give an
S-version of Nagata’s Theorem [13].
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Theorem 3.1. Let D be a Krull domain, T a multiplicative subset generated
by prime elements of D and S a saturated multiplicative subset of D. Then the
homomorphism ϕ : S-Clt(D)→ S-Clt(DT ) is an isomorphism.

Proof. Since the extension D ⊆ DT is flat, then ϕ is an homomorphism [1,
Theorem 4.3]. We show that ϕ is surjective.

Let
Ψ : Clt(D) −→ Clt(DT )

[I] −→ [IT ].

By Nagata’s Theorem [9, Corollary 7.3], the mapping Ψ is surjective. So
the mapping ϕ : S-Clt(D) → S-Clt(DT ) is surjective. Indeed, let [J ]S ∈
S-Clt(DT ). Since J ∈ T (DT ) and Ψ is surjective, there exists an I ∈ T (D)
such that [IT ] = [J ]. This implies that (ITJ

−1)t is a principal ideal of DT , in
particular (ITJ

−1)t is an S-principal ideal of DT . So [IT ]S = [J ]S , and hence
ϕ is surjective. Moreover by Theorem 2.6, the mapping ϕ is injective. Hence
ϕ is an isomorphism. �

Our next result relaxes the Krull assumption in Theorem 3.1. First, let us
recall from [14] that a domain D is said to be a Mori domain if it satisfies the
ascending chain condition on integral divisorial ideals. Also, according to [7], D
is said to satisfy the property (∗) if for any finitely generated ideal I of D, I−1

is of υ-finite type. For examples, Mori domains, PVMD’s satisfy (∗). In [7], El
Abidine generalized Nagata’s Theorem: Let D be an integral domain satisfying
(∗) and T a multiplicative subset generated by prime elements of D. Then the
homomorphism Clt(D) → Clt(DT ) is an isomorphism. Our next Theorem
gives an S-version of this result. So we generalize both Nagata’s Theorem and
the result of El Abidine [7, Theorem 1].

Theorem 3.2. Let D be an integral domain satisfying (∗), T a multiplicative
subset generated by prime elements of D and S a saturated multiplicative subset
of D. Then the homomorphism ϕ : S-Clt(D)→ S-Clt(DT ) is an isomorphism.

Proof. Since the extension D ⊆ DT is flat, then ϕ is an homomorphism [1,
Theorem 4.3].

The injectivity of ϕ follows from Theorem 2.6.
We show that ϕ is surjective. Let

Ψ : Clt(D) −→ Clt(DT )
[I] −→ [IT ].

Since D satisfies (∗), then by [7, Theorem 1], Ψ is an isomorphism. So by the
proof of Theorem 3.1, ϕ is surjective. Hence ϕ is an isomorphism. �

Let D be an integral domain and d an element of D. Recall from [4] that d
is said to be Archimedean (or bounded), if

⋂
n≥0 d

nD = 0. We say that D is
Archimedean, if all element of D are Archimedean.
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Example 3.3. (1) Completely integrally closed domains and domains that
satisfies the ACCP condition (Mori domains and Noetherian domains)
are Archimedeans domains.

(2) Let D be an integral domain and X,Y two indeterminates over D.
Then it is easy to see that X ∈ D[X,Y ] is an Archimedean prime
element.

(3) There exists a prime element which is not Archimedean. Indeed, let
(D,M) be a rank-two discrete valuation domain. Then by [8, Propo-
sition 5.3.1. Page 145], M = pD where p is a prime element of D. Let
Q be a height-one prime ideal of D. Since D is a valuation domain,
then for all n ∈ N, Q ⊆ pnD. Which implies that Q ⊆

⋂
n∈N p

nD. So⋂
n∈N p

nD 6= (0), and hence p is a prime element of D which is not
Archimedean.

If we want to avoid the condition on S (saturated) in Theorem 2.5, we can
take f to be a prime Archimedean element of D. The following Lemma prove
this result.

Lemma 3.4. Let D be an integral domain, S a multiplicative subset of D, I a
divisorial ideal of D and f a prime Archimedean element of D.

(1) If I is an integral ideal of D and If ∩ S 6= ∅, then I is S-principal.
(2) If If is an S-principal ideal of Df and I has v-finite type, then I is an

S-principal ideal of D.

Proof. (1) Since If ∩ S 6= ∅, then there exist an n ∈ N and an s ∈ S such
that sfn ∈ I. If I 6⊆ fD, let i ∈ I \ fD. Since fD is a maximal divisorial
ideal ([9, Lemma 3.7]), then (i, f)v = D. We have (sD)f ⊆ If and (sD)i =
sDi ⊆ Di = Ii. Then by Lemma 2.3, sD = (sD)υ ⊆ Iυ. But by hypothesis
I is divisorial, then sD ⊆ I. So sI ⊆ sD ⊆ I, and hence I is S-principal. If
I ⊆ fD, set F = {m ∈ N, I ⊆ fmD}, F is nonempty because 1 ∈ F. Moreover
F is bounded. Indeed, if F is not bounded, then for all p ∈ N, there exists a
k ≥ p + 1 such that I ⊆ fkD. This implies that (0) 6= I ⊆

⋂
n≥0 f

nD = (0),

contradiction. So F is bounded, and thus it has a maximum N ∈ N, I ⊆ fND
and I 6⊆ fN+1D. Then f−NI ⊆ D and f−NI 6⊆ fD. Set I

′
= f−NI. Since I

is divisorial and I
′ ⊆ D, then I

′
is a divisorial integral ideal of D, and so by

the first case applied on I
′

there exist an s ∈ S such that sI
′ ⊆ sD ⊆ I ′

. Thus
sI ⊆ sfND ⊆ I. Hence I is S-principal.

(2) We proceed exactly as in the proof of Theorem 2.5. �

Corollary 3.5. Let D be an integral domain satisfying (∗), T = {pn, n ∈ N}
where p is an Archimedean prime element of D and S another multiplicative
subset of D. Then the homomorphism ϕ : S-Clt(D) → S-Clt(DT ) is an iso-
morphism.

Proof. To prove ϕ is injective, it is sufficient to proceed exactly as in the proof
of Theorem 2.6, in which the only difference is by using Lemma 3.4 instead
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of Theorem 2.5. Moreover, since D satisfies (∗), then by [7, Theorem 1], the
mapping

Ψ : Clt(D) −→ Clt(DT )
[I] −→ [IT ]

is an isomorphism. So by the proof of Theorem 3.1, ϕ is surjective. �

Proposition 3.6. Let D be an integral domain, T be a multiplicative subset
generated by Archimedeans prime elements of D and S another multiplicative
subset of D. If for each multiplicative subset S′ of D the localization DS′ is
an Archimedean domain, then the homomorphism ϕ : S-Clt(D)→ S-Clt(DT ),
[I]S 7→ [IDT ]S is injective.

Proof. We proceed exactly as in the proof of Theorem 2.6. Indeed, we show
that for I ∈ T (D) if IT is an S-principal ideal of DT , then I is S-principal.
Let I ∈ T (D) such that IT is S-principal. Since I is of v-finite type, then
(D : I)T = (DT : IT ). Since IT is S-principal, then there exist an s ∈ S and
an a ∈ I such that sIT ⊆ aDT ⊆ IT . Thus I−1T ⊆ 1

aDT ⊆ 1
sI
−1
T . Set J = aI−1.

Then J is a divisorial integral ideal of D, JT = aI−1T and sJT ⊆ sDT ⊆ JT . So
there exists an h ∈ T such that sh ∈ J. Write h = pα1

1 · · · pαn
n for some prime

elements p1, . . . , pn of D such that pi 6= pj for all i 6= j. Let f = p1 · · · pn and
let m = max{αi, 1 ≤ i ≤ n}. Then sfm ∈ J . Thus Jf ∩ S 6= ∅. We proceed
then by induction on n:

For n = 1, we have Jp1 ∩S = Jf ∩S 6= ∅. Since p1 is an Archimedean prime
element of D, then by Lemma 3.4(1), J is an S-principal ideal of D. Hence by
Proposition 2.4, I is S-principal.

Suppose that it remains true until the order n, we show that it holds for
n+ 1 :

Let f = p1 · · · pnpn+1, f1 = p1 · · · pn and R = Df1 . Then Df = Rpn+1 . It is
easy to show that Jf1 is an integral divisorial ideal of R and pn+1 is a prime
element of R. Moreover, as by the hypothesis that R is Archimedean, then pn+1

is an Archimedean element of R. Since (Jf1)pn+1
∩ S = Jf ∩ S 6= ∅, then by

Lemma 3.4(1), Jf1 is an S-principal ideal of R. So by the induction hypothesis
J is an S-principal ideal of D. Hence by Proposition 2.4, I is an S-principal
ideal of D. �

Remark 3.7. There exists an Archimedean domain D such that for each prime
ideal P of D the localization DP is not Archimedean. First, let us recall from
[4] that, an element p of D is said to be bounded if p is not Archimedean. Also
we define D to be an anti-Archimedean domain if each nonzero element of D
is bounded.

Now by [4, Example 2.2], there exists an example of a completely integrally
closed (and hence Archimedean) Bezout domain D with no rank-one valuation
overrings. Thus while D is not anti-Archimedean, every valuation overring of
D is anti-Archimedean. Note that each localization DP of D (P a prime ideal)
is anti-Archimedean.
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Since every localization of a Mori domain is a Mori domain (in particular
an Archimedean domain), then Proposition 3.6 can be written as follow.

Corollary 3.8. Let D be a Mori domain, T a multiplicative subset generated
by prime elements of D and S another multiplicative subset of D. Then the
homomorphism ϕ : S-Clt(D)→ S-Clt(DT ), [I]S 7→ [IDT ]S is injective.

The next Theorem give an S-version of Nagata’s Theorem in the case when
D is a Mori domain.

Theorem 3.9. Let D be Mori domain, T a multiplicative subset generated
by prime elements of D and S another multiplicative subset of D. Then the
homomorphism S-Clt(D) −→ S-Clt(DT ) is an isomorphism.

Proof. By the previous Corollary, ϕ is injective.
Since D is a Mori domain, then D satisfies (∗). So by [7, Theorem 1], the
mapping

Ψ : Clt(D) −→ Clt(DT )
[I] −→ [IT ]

is an isomorphism. By the proof of Theorem 3.1, ϕ is surjective and hence ϕ
is an isomorphism. �

Let D be an integral domain with quotient filed K and S a multiplicative
subset of D. The mapping on F(D) defined by I 7→ Iw := {x ∈ K | xJ ⊆ I
for some finitely generated ideal J of D such that Jυ = D} is called the w-
operation on D. Recall from [12] that, a nonzero ideal I of D is S-w-principal
if there exist an s ∈ S and a principal ideal J of D such that sI ⊆ J ⊆ Iw.
We also define D to be an S-factorial domain if each nonzero ideal of D is
S-w-principal. Our next Theorem is an S-version of a will-known result about
factorial domains, that is, if D is a Krull domain and T a multiplicative subset
generated by prime elements of D such that DT is a factorial domain, then D
is a factorial domain [9]. To prove this, we need the following Proposition.

Proposition 3.10 ([1, Theorem 4.1]). Let D be a Krull domain and S a
multiplicative subset of D. Then S-Clt(D) = 0 if and only if D is an S-factorial
domain.

Theorem 3.11. Let D be a Krull domain, T a multiplicative subset generated
by prime elements of D and S another multiplicative subset of D. Then D is
an S-factorial domain if and only if DT is an S-factorial domain.

Proof. (⇒) This implication is always true and need not the Krull hypothesis.
Indeed, let IT be an ideal of DT with I an ideal of D. Since D is S-factorial, then
there exist an s ∈ S and an α ∈ I such that sI ⊆ αD ⊆ Iw. So sIT ⊆ αDT ⊆
(Iw)T . But by [12, Lemma 1.2], (Iw)T ⊆ (IT )w. Hence IT is an S-w-principal
ideal of DT .

(⇐) Since a Krull domain is a Mori domain, then this implication follows
from Theorem 3.9 and Proposition 3.10. �
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Recall a couple of definitions from [1]. Let D be an integral domain and S a
multiplicative subset of D. We say that a nonzero ideal I of D is S-υ-principal
if there exist an s ∈ S and a ∈ D such that sI ⊆ aA ⊆ Iυ. We also define
D to be an S-GCD-domain if each finitely generated nonzero ideal of D is
S-υ-principal.

Proposition 3.12 ([1, Theorem 4.2]). Let D be a PυMD. Then S-Clt(D) = 0
if and only if D is an S-GCD-domain.

We finish this work with the following Theorem.

Theorem 3.13. Let D be a PυMD, T a multiplicative subset generated by
prime elements of D and S a saturated multiplicative subset of D. Then D is
an S-GCD domain if and only if DT is an S-GCD domain.

Proof. (⇒) This implication is always true and need not the PυMD hypothesis.
Indeed, let J be a finitely generated ideal of DT . Then we can find a finitely
generated ideal I of D such that J = IT . Since D is an S-GCD domain, then
there exist an s ∈ S and an α ∈ I such that sI ⊆ αD ⊆ Iυ. As I is a finitely
generated ideal of D, then (Iυ)T ⊆ (IT )υ. So sIT ⊆ αDT ⊆ (Iυ)T ⊆ (IT )υ.
Thus J = IT is S-υ-principal.

(⇐) This implication follows from Theorem 3.2 and Proposition 3.12. �
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[14] J. Querré, Sur une propiété des anneaux de Krull, Bull. Sci. Math. (2) 95 (1971), 341–
354.

Ahmed Hamed

Department of Mathematics

Faculty of Sciences
Monastir, Tunisia

Email address: hamed.ahmed@hotmail.fr


