Abstract
In [1], the authors generalize the concept of the class group of an integral domain $D(Cl_t(D))$ by introducing the notion of the S-class group of an integral domain where S is a multiplicative subset of D. The S-class group of D, $S-Cl_t(D)$, is the group of fractional t-invertible t-ideals of D under the t-multiplication modulo its subgroup of S-principal t-invertible t-ideals of D. In this paper we study when $S-Cl_t(D){\simeq}S-Cl_t(D_T)$, where T is a multiplicative subset generated by prime elements of D. We show that if D is a Mori domain, T a multiplicative subset generated by prime elements of D and S a multiplicative subset of D, then the natural homomorphism $S-Cl_t(D){\rightarrow}S-Cl_t(D_T)$ is an isomorphism. In particular, we give an S-version of Nagata's Theorem [13]: Let D be a Krull domain, T a multiplicative subset generated by prime elements of D and S another multiplicative subset of D. If $D_T$ is an S-factorial domain, then D is an S-factorial domain.