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POSNER’S THEOREM FOR GENERALIZED DERIVATIONS

ASSOCIATED WITH A MULTIPLICATIVE DERIVATION
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Abstract. Let R be a ring and P be a prime ideal of R. A mapping

d : R → R is called a multiplicative derivation if d(xy) = d(x)y + xd(y)

for all x, y ∈ R. In this paper, our main motive is to obtain the well-
known theorem due to Posner in the ring R/P for generalized derivations

associated with a multiplicative derivation defined by an additive mapping

F : R → R such that F (xy) = F (x)y + xd(y), where d : R → R is a
multiplicative derivation not necessarily additive. This article discusses the

use of generalized derivations associated with a multiplicative derivation to

investigate the commutativity of the quotient ring R/P .
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1. Introduction

Throughout this paper, R will represent an associative ring with center Z(R).
The ring R is called a prime ring if a, b ∈ R, aRb = (0) implies a = 0 or b = 0.
An ideal P of R is said to be prime if for a, b ∈ R, aRb ⊆ P implies that
a ∈ P or b ∈ P . The commutator of two elements x and y of R is defined
as [x, y] = xy − yx, while the symbol x ◦ y denotes the anti commutator of
two elements x and y of R, which is defined as xy + yx. An additive mapping
d : R → R is a derivation of R if d(xy) = d(x)y + xd(y) for all x, y ∈ R. An
additive map F : R → R is said to be a generalized derivation associated with a
derivation d of R such that F (xy) = F (x)y + xd(y) for all x, y ∈ R. The study
of generalized derivation in prime rings was initiated by Hvala in [1], where he
introduced the concept of generalized derivations. Obviously, every derivation
is a generalized derivation, but the converse is not true in general. An additive
map f : R → R is said to be left multiplier f(xy) = f(x)y for all x, y ∈ R.
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Hence, generalized derivation covers both the concepts of derivations and left
multipliers.

The concept of multiplicative derivation was first introduced by Daif [3]. The
motivation behind the concept was the work of Martindale [4]. According to
Daif, the mapping D : R → R is said to be a multiplicative derivation if
D(xy) = D(x)y + xD(y) for all x, y ∈ R. Particularly, in the case of multiplica-
tive derivations, the mappings are not assumed to be additive. Later, the com-
plete description of these mappings was given by Goldmann and Semrl [5]. The
concept of multiplicative derivations was further extended to multiplicative gen-
eralized derivations by Daif and Tammam El-Saiyad [6]. Further, a more general
definition of multiplicative (generalized)-derivation was given by Dhara and Ali
[9] as follows: A mapping F : R → R is said to be a multiplicative (generalized)-
derivation if there exists a map g on R such that F (xy) = F (x)y+ xg(y) for all
x, y ∈ R, where g is any mapping on R not necessarily additive.

A mapping f : R → R is called centralizing on a non empty setH if [f(x), x] ∈
Z(R) for all x ∈ H and is called commuting if [f(x), x] = 0 for all x ∈ H.
The first investigation in this direction was made by Posner [7]. Regarding
commutativity in prime ring, Posner [7] studied as follows: A prime ring R
admitting a nonzero centralizing derivation is commutative.

The relation between the existence of a derivation of a ring R and its com-
mutativity has been a topic of continuous research in the last several years (see
[8], [10], [11], [12]). Many authors have obtained the commutativity of prime
and semi prime rings with generalized derivations satisfying certain differential
constraints. In this paper, we are interested in the study of rings given as a
quotient R/P , where R is an arbitrary ring and P is a prime ideal of R. The
symbol x denotes the element x+P in R/P . We are using a generalized deriva-
tion associated with a multiplicative derivation on R. More precisely, we obtain
Posner’s first and second theorems. Using a generalized derivation associated
with a multiplicative derivation, in this paper, we investigate the commutativity
of the factor ring R/P .

2. Preliminary Results

In order to study our main theorem, first we will establish some results:

Lemma 2.1. Let R be a ring and P be a prime ideal of R. Let F be a generalized
derivation associated with a multiplicative derivation d of R. If a ∈ R such that
aF (x) ∈ P , then a ∈ P or d(R) ⊆ P.

Proof. For any a in R, we have

aF (x) ∈ P, for all x ∈ R. (1)

Replacing x by xy, we get

aF (x)y + axd(y) ∈ P, for all x, y ∈ R. (2)
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Using (1), we get

axd(y) ∈ P, for all x, y ∈ R. (3)

Which is

aRd(y) ∈ P, for all y ∈ R. (4)

Now, using the fact that P is prime, we have

a ∈ p or d(R) ⊆ P.

□

Lemma 2.2. Let R be a ring and P be a prime ideal of R. Let F be a generalized
derivation associated with a multiplicative (not additive) derivation d and G =
{x ∈ R|d(x) ∈ P} be a subset of R, then G is an additive subgroup of R.

Proof. Consider

G = {x ∈ R : d(x) ∈ P}.
Let x ∈ R and y, z ∈ G, which implies d(y) ∈ P and d(z) ∈ P . Now,

F (x(y − z)) = F (x)(y − z) + xd(y − z).

Which gives

F (xy − xz) = F (x)(y − z) + xd(y − z), for all x, y, z ∈ R.

That is

F (x)y+ xd(y)− F (x)z − xd(z) = F (x)(y− z) + xd(y− z), for all x, y, z ∈ R.

Which results in

F (x)(y − z) + xd(y)− xd(z) = F (x)(y − z) + xd(y − z), for all x, y, z ∈ R.

That is

xd(y)− xd(z) = xd(y − z), for all x, y, z ∈ R.

Since, d(y) ∈ P and d(z) ∈ P , therefore, xd(y − z) ∈ P . Which implies

d(y − z)xd(y − z) ∈ P, for all x, y, z ∈ R.

Therefore,

d(y − z) ∈ P, for all y, z ∈ R.

Hence,

y − z ∈ G, for all y, z ∈ R.

Therefore, G is an additive subgroup of R. □

Lemma 2.3. Let R be a ring and P be a prime ideal of R. Let F be a generalized
derivation associated with a multiplicative derivation d of R. If [[x, F (x)], y] ∈ P

for all y ∈ R, then we have x[x, d(x)]x = x2[x, d(x)].
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Proof. For any x, y ∈ R, we have

[[x, F (x)], y] ∈ P. (5)

Therefore,

[x, F (x)] ∈ Z(R/P ), for all x ∈ R. (6)

On linearizing

[x, F (y)] + [y, F (x)] ∈ Z(R/P ), for all x, y ∈ R. (7)

Replacing y by x2 in (7), we get

[x, F (x)]x+ x[x, d(x)] + x[x, F (x)] + [x, F (x)]x ∈ Z(R/P ), for all x ∈ R. (8)

Using (6), we get

3x[x, F (x)] + x[x, d(x)] ∈ Z(R/P ), for all x ∈ R. (9)

Which results in

[3x[x, F (x)] + x[x, d(x)], x] = 0, for all x ∈ R. (10)

This gives

x[x, d(x)]x− x2[x, d(x)] = 0, for all x ∈ R.

Which implies

x[x, d(x)]x = x2[x, d(x)], for all x ∈ R.

□

Lemma 2.4. Let R be a ring and P be a prime ideal of R. Let F be a generalized
derivation of R, associated with a multiplicative derivation d. If [x, F (x)] ∈ P
for all x ∈ R, then d(R) ⊆ P or R/P is commutative.

Proof. For all x ∈ R, we have

[x, F (x)] ∈ P. (11)

On linearizing (11), we get

[x, F (y)] + [y, F (x)] ∈ P, for all x, y ∈ R. (12)

Now, replacing y by yx in (12), we get

([x, F (y)] + [y, F (x)])x+ y[x, d(x)] + [x, y]d(x) ∈ P, for all x, y ∈ R. (13)

Using (12), we get

y[x, d(x)] + [x, y]d(x) ∈ P, for all x, y ∈ R. (14)

Replacing y by zy in (14), we get

zy[x, d(x)] + z[x, y]d(x) + [x, z]yd(x) ∈ P, for all x, y, z ∈ R.

Using (14), we get
[x, y]yd(x) ∈ P, for all x, y ∈ R. (15)

Which is
[x, y]Rd(x) ∈ P, for all x, y ∈ R.
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Using the fact that P is a prime ideal of R, we get

d(x) ∈ P or [x, y] ∈ P, for all x, y ∈ R.

Consequently, R is a union of two subgroups, G1 and G2, where

G1 = {x ∈ R|d(x) ∈ P} and G2 = {x ∈ R|[R, y] ⊂ P}.
Now, G1 is clearly an additive subgroup of R and using Lemma 2.2, G2 is also
an additive subgroup of R. Since a group cannot be a union of two of its proper
subgroups, we conclude that either R = G1 or R = G2. That is, d(R) ⊆ P or
R/P is commutative. □

3. Main Results

In this work, we explore Posner’s theorem on the ring R/P in the context of
generalized derivation associated with multiplicative derivation. The obtained
results are stated below:

Theorem 3.1. Let R be a ring and P be a prime ideal of R. Let F1 and F2

be two generalized derivations of R associated with multiplicative derivations d1
and d2, respectively. If F1(x)d2(y) + F2(x)d1(y) ∈ P , then we have one of the
following assertions:

(i) char R/P = 2,
(ii) F1(R) ⊆ P ,
(iii) d1(R) ⊆ P ,
(iv) d2(R) ⊆ P .

Proof. Assume that charR/P ̸= 2, we are given that

F1(x)d2(y) + F2(x)d1(y) ∈ P, for all x, y ∈ R. (16)

Replacing y by ry in (16), we get

F1(x)d2(r)y+F2(x)d1(r)y+F1(x)rd2(y)+F2(x)rd1(y) ∈ P, for all x, y, r ∈ R.
(17)

Using (16), we have

F1(x)rd2(y) + F2(x)rd1(y) ∈ P, for all x, y, r ∈ R. (18)

Now replace x by rx in (16)

F1(r)xd2(y)+ rd1(x)d2(y)+F2(r)xd1(y)+ rd2(x)d1(y) ∈ P, for all x, y, r ∈ R.
(19)

Using (18), we get

r(d1(x)d2(y) + d2(x)d1(y)) ∈ P, for all x, y, r ∈ R. (20)

Since P is prime, we have

d1(x)d2(y) + d2(x)d1(y) ∈ P, for all x, y ∈ R. (21)

Now replace x by rd1(z) in (16)

(F1(r)d1(z) + rd1(d1(z)))d2(y) + (F2(r)d1(z) + rd2(d1(z)))d1(y) ∈ P, (22)
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for all r, y, z ∈ R.
Using (21) with x = d1(z), we get

F1(r)d1(z)d2(y) + F2(r)d1(z)d1(y) ∈ P, for all z, y, r ∈ R. (23)

Using (16), we can write

F1(r)d2(z)d1(y) + F2(r)d1(z)d1(y) ∈ P, for all z, y, r ∈ R. (24)

Using (21) and (23), we get

F1(r)(d2(z)d1(y)− d1(z)d2(y)) ∈ P, for all z, y, r ∈ R. (25)

Using Lemma 2.1, we get

F1(r) ∈ P or d2(z)d1(y)− d1(z)d2(y) ∈ P, for all y, z ∈ R. (26)

Using (21) and (26), we get

2d2(z)d1(y) ∈ P, for all y, z ∈ R.

Since R/P is not of char 2, for all y, z ∈ P we have

2d2(z)d1(y) = 0.

Which gives

d2(z)d1(y) = 0.

That is

d2(z)d1(y) ∈ P.

On replacing d2(z) = a, we have

ad1(y) ∈ P, for all a, y ∈ R.

Using Lemma 2.1, we get

d1(y) ⊆ P or a ∈ P, for all a, y ∈ R.

Which results in

d1(y) ⊆ P or d2(z) ⊆ P, for all y, z ∈ R.

□

Using similar arguments and in equation (16) replacing x by rd2(z) instead
of rd1(z) and in equation (21) replacing x by d2(z) instead of d1(z), we get

Theorem 3.2. Let R be a ring and P be a prime ideal of R. Let F1 and F2

be two generalized derivations of R associated with multiplicative derivations d1
and d2, respectively. If F1(x)d2(y) + F2(x)d1(y) ∈ P , then we have one of the
following assertions:

(i) char R/P = 2,
(ii) F2(R) ⊆ P ,
(iii) d1(R) ⊆ P ,
(iv) d2(R) ⊆ P .
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If we take R to be a prime ring and P = (0), then we can obtain Posner’s
first theorem:

Corollary 3.3 (7, Theorem 1). Let R be a 2 torsion free prime ring. If d1 and
d2 are derivations on R such that the iterate of d1 and d2 is also a derivation of
R, then d1 = 0 or d2 = 0.

Proof. Assume that the iterate of two derivations d1 and d2 is also a derivation,
then

d1d2(xy) = d1d2(x)y + xd1d2(y), for all x, y ∈ R. (27)

As d2 is a derivation, hence

d1d2(xy) = d1(d2(x)y + xd2(y)), for all x, y ∈ R.

As d1 is a derivation, which gives

d1d2(xy) = d1d2(x)y + d2(x)d1(y) + d1(x)d2(y) + xd1d2(y), for all x, y ∈ R.
(28)

Using (27) and (28), we get

d1(x)d2(y) + d2(x)d1(y) = 0, for all x, y ∈ R.

Hence, the above theorem follows.
□

Theorem 3.4. Let R be a ring and F : R → R be a generalized derivation
associated with a multiplicative derivation d. If [[x, F (x)], y] ∈ P for all y ∈ R,
then we have one of the following:

(i) char R/P = 2,
(ii) R/P is commutative.

Proof. Assume that char R/P ̸= 2, for all x, y ∈ R we have

[[x, F (x)], y] ∈ P. (29)

Which gives

[x, F (x)] ∈ Z(R/P ). (30)

Linearizing (30), we get

[x, F (y)] + [y, F (x)] ∈ Z(R/P ). (31)

Replacing y by xy in (31), we get

F (x)[x, y] + [x, F (x)]y + x[x, d(y)] + x[y, F (x)] + [x, F (x)]y ∈ Z(R/P ).

Which gives

2[x, F (x)]y + F (x)[x, y] + x[x, d(y)] + x[y, F (x)] ∈ Z(R/P ).

Substituting x2 in place of y gives

4x2[x, F (x)] + x[x, d(x)]x+ x2[x, d(x)] ∈ Z(R/P ). (32)
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Using Lemma (2.3), we get

4x2[x, F (x)] + 2x2[x, d(x)] ∈ Z(R/P ). (33)

By hypothesis, we have

[x2, F (x2)] ∈ Z(R/P ).

Which gives

x[x, F (x)]x+ x2[x, d(x)] + [x, F (x)]x2 + x[x, d(x)]x ∈ Z(R/P ).

Using (30) and Lemma (2.3), we get

2x2[x, F (x)] + 2x2[x, d(x)] ∈ Z(R/P ). (34)

Using (33) and (34), we get

2x2[x, F (x)] ∈ Z(R/P ).

Particularly,

[2x2[x, F (x)], F (x)] = 0.

Since R/P is 2 torsion free

x[x, F (x)]2 = 0. (35)

Hence, by (35) and [x, F (x)] ∈ Z(R/P ), we get

x = 0 or [x, F (x)] = 0.

As R/P is prime, Lemma 2.4 finishes the proof. □

We can obtain Posner’s second theorem for P = (0) as:

Corollary 3.5 (7, Theorem 2). Let R be a 2 torsion free prime ring. Let d
be a derivation on R such that [d(x), x] ∈ Z(R) for all x, y ∈ R, then R is
commutative.

The following examples demonstrate that prime ideal is a necessary condition
in the hypotheses of both theorems.

Example 3.6. Let R =


0 a b
0 0 c
0 0 0

 : a, b, c ∈ Z

 be the ring of 3×3 matrices,

define F, d : R −→ R as follows

d

0 a b
0 0 c
0 0 0

 =

0 0 a2

0 0 0
0 0 0

 and F

0 a b
0 0 c
0 0 0

 =

0 0 0
0 0 −c
0 0 0

 .

Here, F is a generalized derivation associated with the multiplicative derivation

d. Let P =


0 0 a
0 0 0
0 0 0

 : a ∈ Z

, which is not a prime ideal of R. Now, it can

be verified that the condition [[x, F (x)], y] ∈ P in Theorem 3.4 holds true, but
neither char R/P = 2 nor R/P is commutative.
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Example 3.7. Let R =


a 0 0
0 0 b
0 0 0

 : a, b, c ∈ R

, be the ring of 3× 3 matri-

ces where R is a non-commutative ring, define F, d : R −→ R as follows

d

a 0 0
0 0 b
0 0 0

 =

0 0 0
0 0 b2

0 0 0

 and F

a 0 0
0 0 b
0 0 0

 =

0 0 0
0 0 −b
0 0 0

 .

Here, F is a generalized derivation associated with the multiplicative derivation

d. Let P =


0 0 a
0 0 0
0 0 0

 : a ∈ R

, clearly, P is not a prime ideal of R. We can

see that the condition F1(x)d2(y) + F2(x)d1(y) ∈ P in Theorem 3.1 holds for
F1 = F2 = F and d1 = d2 = d. Now, we can easily verify that any assertion of
Theorem 3.1 does not hold true.
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