References
- E. Albas, Generalized derivations on ideals of prime rings, Miskolc Math. Notes 14 (2013), no. 1, 3-9. https://doi.org/10.18514/mmn.2013.499
- F. A. A. Almahdi, A. Mamouni, and M. Tamekkante, A generalization of Posner's theorem on derivations in rings, Indian J. Pure Appl. Math. 51 (2020), no. 1, 187-194. https://doi.org/10.1007/s13226-020-0394-8
- M. Ashraf and A. Khan, Commutativity of *-prime rings with generalized derivations, Rend. Semin. Mat. Univ. Padova 125 (2011), 71-79. https://doi.org/10.4171/RSMUP/125-5
- M. Ashraf and N. Rehman, On commutativity of rings with derivations, Results Math. 42 (2002), no. 1-2, 3-8. https://doi.org/10.1007/BF03323547
- A. Asma, N. Rehman, and A. Shakir, On Lie ideals with derivations as homomorphisms and anti-homomorphisms, Acta Math. Hungar. 101 (2003), no. 1-2, 79-82. https://doi.org/10.1023/B:AMHU.0000003893.61349.98
- H. E. Bell and L.-C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar. 53 (1989), no. 3-4, 339-346. https://doi.org/10.1007/BF01953371
- H. E. Bell and W. S. Martindale, III, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30 (1987), no. 1, 92-101. https://doi.org/10.4153/CMB-1987-014-x
- H. E. Bell and N.-U. Rehman, Generalized derivations with commutativity and anti-commutativity conditions, Math. J. Okayama Univ. 49 (2007), 139-147.
- M. Bresar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), no. 1, 89-93. https://doi.org/10.1017/S0017089500008077
- M. Bresar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), no. 2, 385-394. https://doi.org/10.1006/jabr.1993.1080
- C. Lanski, Differential identities, Lie ideals, and Posner's theorems, Pacific J. Math. 134 (1988), no. 2, 275-297. http://projecteuclid.org/euclid.pjm/1102689262 https://doi.org/10.2140/pjm.1988.134.275
- A. Mamouni, B. Nejjar, and L. Oukhtite, On *-semiderivations and *-generalized semiderivations, J. Algebra Appl. 16 (2017), no. 4, 1750075, 8 pp. https://doi.org/10.1142/S021949881750075X
- A. Mamouni, B. Nejjar, and L. Oukhtite, Differential identities on prime rings with involution, J. Algebra Appl. 17 (2018), no. 9, 1850163, 11 pp. https://doi.org/10.1142/S0219498818501633
- A. Mamouni, L. Oukhtite, and M. Zerra, On derivations involving prime ideals and commutativity in rings, Sao Paulo J. Math. Sci. 14 (2020), no. 2, 675-688. https://doi.org/10.1007/s40863-020-00187-z
- Nadeem-ur-Rehman, On generalized derivations as homomorphisms and antihomomorphisms, Glas. Mat. Ser. III 39(59) (2004), no. 1, 27-30. https://doi.org/10.3336/gm.39.1.03
- B. Nejjar, A. Kacha, A. Mamouni, and L. Oukhtite, Commutativity theorems in rings with involution, Comm. Algebra 45 (2017), no. 2, 698-708. https://doi.org/10.1080/00927872.2016.1172629
- L. Oukhtite, Posner's second theorem for Jordan ideals in rings with involution, Expo. Math. 29 (2011), no. 4, 415-419. https://doi.org/10.1016/j.exmath.2011.07.002
- E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. https://doi.org/10.2307/2032686