ON THE IDEAL CLASS GROUPS OF \mathbb{Z}_p -EXTENSIONS OVER REAL ABELIAN FIELDS

Jae Moon Kim, Ja Do Ryu

ABSTRACT. Let k be a real abelian field and $k_{\infty} = \bigcup_{n \geq 0} k_n$ be its \mathbb{Z}_p -extension for an odd prime p. For each $n \geq 0$, we denote the class number of k_n by k_n . The following is a well known theorem:

THEOREM. Suppose p remains inert in k and the prime ideal of k above p totally ramifies in k_{∞} . Then $p \nmid h_0$ if and only if $p \nmid h_n$ for all $n \geq 0$.

The aim of this paper is to generalize above theorem:

THEOREM 1. Suppose $H^1(G_n, E_n) \simeq (\mathbb{Z}/p^n\mathbb{Z})^l$, where l is the number of prime ideals of k above p. Then $p \nmid h_0$ if and only if $p \nmid h_n$.

Theorem 2. Let k be a real quadratic field. Suppose that $H^1(G_1, E_1) \simeq (\mathbb{Z}/p\mathbb{Z})^l$. Then $p \nmid h_0$ if and only if $p \nmid h_n$ for all $n \geq 0$.

1. Introduction

Let k be a number field. For each prime p, let k_{∞} be a \mathbb{Z}_p -extension of k. Namely, k_{∞} is an extension of k whose Galois group over k is isomorphic to the additive group of the p-adic integers \mathbb{Z}_p .

By infinite Galois theory, to each closed subgroup $p^n \mathbb{Z}_p$ of \mathbb{Z}_p , there corresponds a unique intermediate field k_n such that $Gal(k_n/k) \simeq \mathbb{Z}_p/p^n \mathbb{Z}_p \simeq \mathbb{Z}/p^n \mathbb{Z}$ and that $k_\infty = \bigcup_{n \geq 0} k_n$.

For example, $\mathbb{Q}(\zeta_{p^{\infty}}) = \bigcup_{n\geq 1} \mathbb{Q}(\zeta_{p^n})$ is a \mathbb{Z}_p -extension of $\mathbb{Q}(\zeta_p)$, where ζ_{p^n} is a primitive p^n th root of 1. Let \mathbb{Q}_n be the unique subfield of $\mathbb{Q}(\zeta_{p^{n+1}})$ whose degree over \mathbb{Q} is p^n . Then $\mathbb{Q}_{\infty} = \bigcup_{n\geq 0} \mathbb{Q}_n$ is a

Received June 12, 1999.

¹⁹⁹¹ Mathematics Subject Classification: primary:11R23, secondary:11R29.

Key words and phrases: \mathbb{Z}_p -extension, class number, circular units.

This paper was supported by research fund of Inha University, 1998.

 \mathbb{Z}_p -extension of \mathbb{Q} . In general, for any number field k, $k_{\infty} = k\mathbb{Q}_{\infty}$ is a \mathbb{Z}_p -extension of k and such a \mathbb{Z}_p -extension is called the basic (or cyclotomic) \mathbb{Z}_p -extension of k. Thus every number field has at least one \mathbb{Z}_p -extension. When k is a totally real field, Leopoldt conjecture asserts that k admits only one \mathbb{Z}_p -extension, namely the basic \mathbb{Z}_p -extension. And Leopoldt conjecture is valid when k is a real abelian field ([11]).

Let $k_{\infty} = \bigcup_{n\geq 0} k_n$ be a \mathbb{Z}_p -extension of k. Let h_n be the class number of k_n , and e_n the exact power of p in h_n , i.e., $p^{e_n}||h_n$. Then, by Iwasawa theory, there are integers $\mu, \lambda \geq 0$ and ν such that $e_n = \mu p^n + \lambda n + \nu$ for $n \gg 0$ ([3]). These constants are called the Iwasawa invariants of k_{∞} over k. In 1979, Ferrero and Washington ([1]) proved that $\mu = 0$ when k is an abelian field and k_{∞} is the basic \mathbb{Z}_p -extension of k. Around at the same time, Greenberg conjectured that $\lambda = 0$ if k is a totally real field and gave a number of examples supporting the conjecture ([2]). Therefore, if Greenberg conjecture holds for a real abelian field k, then $\mu = \lambda = 0$ and thus $e_n = \nu$ is a constant for $n \gg 0$, which is independent of n.

It might happen that $p \nmid h_n$ for all $n \geq 0$, i.e., $\mu = \lambda = \nu = 0$. The aim of this paper is to study when this happens. In certain cases, $p \nmid h_0$ is necessary and sufficient for $p \nmid h_n$ for all $n \geq 0$. For instance, we have the following theorem ([11]):

THEOREM. Suppose p remains inert in k and the prime ideal of k above p totally ramifies in k_{∞} . Then $p \nmid h_0$ if and only if $p \nmid h_n$ for all $n \geq 0$.

In this paper we study generalizations of above theorem. Namely, we will find conditions under which the statement " $p \nmid h_0$ if and only if $p \nmid h_n$ " is true.

2. Units and circular units

Let k be a real abelian field such that $k \cap \mathbb{Q}_{\infty} = \mathbb{Q}$ and consider its basic \mathbb{Z}_p -extension $k_{\infty} = \bigcup_{n \geq 0} k_n$ for an odd prime p such that $p \nmid h_0$ and $p \nmid f\varphi(f)$, where f is the conductor of k. Let E_n be the unit group of k_n and C_n the subgroup of E_n consisting of circular units defined by Sinnott ([10]). Let B_n be the Sylow p-subgroup of E_n/C_n , and A_n that of the ideal class group of k_n . Then the index theorem of Sinnott

says that ${}^{\#}A_n = {}^{\#}B_n$ if p is an odd prime ([10]).

In this section, we introduce two exact sequences involving cohomology groups of units and circular units. The first one is well known and we omit its proof. For details, refer to [7].

Let I_n be the ideal group of k_n and P_n its subgroup generated by principal ideals. Then we have the following exact sequence ([7]):

$$0 \to H^{1}(G_{n}, E_{n}) \to I_{n}^{G_{n}}/P_{0} \to (I_{n}/P_{n})^{G_{n}} \to Ker(\hat{H}^{0}(G_{n}, E_{n}) \to \hat{H}^{0}(G_{n}, k_{n}^{\times})) \to 0,$$

where G_n is the Galois group $Gal(k_n/k)$.

Since we are assuming $p \nmid h_0$, $I_0/P_0 = \{0\}$. Thus we get

(1)
$$0 \to H^1(G_n, E_n) \to I_n^{G_n}/I_0 \to A_n^{G_n} \to Ker(\hat{H}^0(G_n, E_n) \to \hat{H}^0(G_n, k_n^{\times})) \to 0.$$

For the second exact sequence, we need a lemma.

LEMMA 1. Let $G_{m,n} = Gal(k_m/k_n)$ for $m > n \ge 0$. Then we have $C_m^{G_{m,n}} = C_n$.

Proof. Let $K_m = \mathbb{Q}(\zeta_{p^{m+1}f})$ and $K_n = \mathbb{Q}(\zeta_{p^{n+1}f})$. Then it is known that $\overline{C}_m^{G_{m,n}} = \overline{C}_n$, where \overline{C}_m (\overline{C}_n , respectively) is the group of cyclotomic units of K_m (K_n , respectively) ([5]). Obviously, $C_n \subset C_m^{G_{m,n}}$. To prove $C_m^{G_{m,n}} \subset C_n$, take $u \in C_m^{G_{m,n}}$. We will show that $u^d \in C_n$ and $u^{p^{m-n}} \in C_n$, where $d = [\mathbb{Q}(\zeta_{pf}) : k]$. Then, since $(d, p^{m-n}) = 1$, we have $u \in C_n$.

First, we view u as an element in $\overline{C}_m^{G_{m,n}}$. Since $\overline{C}_m^{G_{m,n}} = \overline{C}_n, u \in \overline{C}_n \cap k_m \subset k_n$. Therefore $N_{K_n/k_n}(u) = u^d \in C_n$. Next, note that $u^{p^{m-n}} = N_{k_m/k_n}(u)$ since u is fixed under $G_{m,n}$. Thus $u^{p^{m-n}} = N_{k_m/k_n}(u) \in C_n$. This proves the lemma.

From the short exact sequence

$$0 \to C_n \to E_n \to B_n \to 0$$
,

we have a long exact sequence

$$0 \to C_n^{G_n} \to E_n^{G_n} \to B_n^{G_n} \to H^1(G_n, C_n) \to H^1(G_n, E_n) \to H^1(G_n, B_n) \to \cdots$$

Since $C_n^{G_n} = C_0$ and $E_n^{G_n} = E_0$, the first four terms of above sequence read:

$$0 \to C_0 \to E_0 \to B_n^{G_n} \to H^1(G_n, C_n) \to \cdots$$

Thus we have

$$0 \to B_n^{G_n}/B_0 \to H^1(G_n, C_n) \to \cdots$$

By the index theorem of Sinnott ([10]), $B_0 = A_0 = \{0\}$. Therefore we obtain

(2)
$$0 \to B_n^{G_n} \to H^1(G_n, C_n) \to H^1(G_n, E_n) \to H^1(G_n, B_n) \to \cdots$$

3. Main theorems

Let k be a real abelian field and l the number of prime ideals of k above p.

THEOREM 1. Suppose that $H^1(G_n, E_n) \simeq (\mathbb{Z}/p^n\mathbb{Z})^l$. Then $p \nmid h_0$ if and only if $p \nmid h_n$.

Remarks.

- (1) It is known that $\varinjlim H^1(G_n, E_n) \simeq (\mathbb{Q}_p/\mathbb{Z}_p)^l$, where the limit is taken under the inflation maps ([4]). Also, from the exact sequence (1) in Section 2, $H^1(G_n, E_n) \hookrightarrow I_n^{G_n}/I_0 \simeq (\mathbb{Z}/p^n\mathbb{Z})^l$. Thus it is plausible that $H^1(G_n, E_n) \simeq (\mathbb{Z}/p^n\mathbb{Z})^l$. But this is not always the case. For instance, when $k = \mathbb{Q}(\sqrt{85})$ and p = 3, $3 \nmid h_0$ but $3 \mid h_1$. Thus $H^1(G_1, E_1) \not\simeq (\mathbb{Z}/p\mathbb{Z})^2$.
- (2) Suppose that l=1, i.e., p remains inert in k. Let π_n be a prime element of \mathbb{Q}_n . Then $\pi_n^{\sigma-1}$ is an element of $H^1(G_n, E_n)$ of order p^n . Thus $\mathbb{Z}/p^n\mathbb{Z}$ is a subgroup of $H^1(G_n, E_n)$. On the other hand, by (1) of Section 2, $H^1(G_n, E_n)$ is a subgroup

of $I_n^{G_n}/I_0 \simeq \mathbb{Z}/p^n\mathbb{Z}$. Therefore $H^1(G_n, E_n) \simeq \mathbb{Z}/p^n\mathbb{Z}$ when p remains inert. Thus the hypothesis of Theorem 1 is satisfied in this case. Hence $p \nmid h_0$ if and only if $p \nmid h_n$. But this is nothing but the theorem in the introduction. Therefore Theorem 1 can be thought of as a generalization of the theorem in the introduction.

Proof of theorem. By class field theory, $p \nmid h_n$ implies $p \nmid h_0$. We will prove the converse.

First, we claim that the map $H^1(G_n, C_n) \to H^1(G_n, E_n)$ in (2) is surjective. Let $C_{\infty} = \bigcup_{n \geq 0} C_n$, $E_{\infty} = \bigcup_{n \geq 0} E_n$ and $B_{\infty} = \bigcup_{n \geq 0} B_n$. By taking direct limits under the inflation maps of the exact sequence (2), we obtain

$$0 \to B_{\infty}^{\Gamma} \to H^1(\Gamma, C_{\infty}) \to H^1(\Gamma, E_{\infty}) \to \cdots,$$

where $\Gamma = Gal(k_{\infty}/k)$. Note that B_{∞}^{Γ} is finite, and that $H^1(\Gamma, C_{\infty}) \simeq (\mathbb{Q}_p/\mathbb{Z}_p)^l$ ([8]). Since $H^1(G_n, E_n) \simeq (\mathbb{Z}/p^n\mathbb{Z})^l$, $H^1(\Gamma, E_{\infty}) = (\mathbb{Q}_p/\mathbb{Z}_p)^l$ by taking limits. Thus $H^1(\Gamma, C_{\infty}) \to H^1(\Gamma, E_{\infty})$ is surjective since $(\mathbb{Q}_p/\mathbb{Z}_p)^l$ has no finite nontrivial cokernel. Now consider the following commutative diagram:

where vertical maps are inflation maps. From the injectivity of the inflation map $H^1(G_n, E_n) \to H^1(\Gamma, E_{\infty})$, we see that $H^1(G_n, E_n) \to H^1(G_n, B_n)$ is the zero map. Thus $H^1(G_n, C_n) \to H^1(G_n, E_n)$ is surjective.

Then the sequence (2) in Section 2 reads:

$$0 \to B_n^{G_n} \to H^1(G_n, C_n) \to H^1(G_n, E_n) \to 0.$$

Since $H^1(G_n, C_n) \simeq (\mathbb{Z}/p^n\mathbb{Z})^l \simeq H^1(G_n, E_n)([8])$, $B_n^{G_n}$ must be trivial. Therefore $B_n = \{0\}$. Hence $A_n = \{0\}$ by the index theorem. This finishes the proof.

COROLLARY 1. Suppose $p \nmid h_0$. If $H^1(G_n, E_n) \simeq (\mathbb{Z}/p^n\mathbb{Z})^l$, then $E_0 \cap N_{k_n/k}(k_n^{\times}) = N_{k_n/k}(E_n)$.

Proof. By Theorem 1, $A_n = \{0\}$. So $A_n^{G_n} = \{0\}$. Then by the sequence (1) in Section 2, $Ker((\hat{H}^0(G_n, E_n) \to \hat{H}^0(G_n, k_n^{\times})) = 0$. Thus $\hat{H}^0(G_n, E_n) \to \hat{H}^0(G_n, k_n^{\times})$ is injective, i.e., $E_0/N_{k_n/k}(E_n) \to k^{\times}/N_{k_n/k}(k_n^{\times})$ is injective. Therefore $E_0 \cap N_{k_n/k}(k_n^{\times}) = N_{k_n/k}(E_n)$. \square

When k is a real quadratic field, one can say a little more.

COROLLARY 2. Let k be a real quadratic field, and suppose that $H^1(G_1, E_1) \simeq (\mathbb{Z}/p\mathbb{Z})^l$. Then $p \nmid h_0$ if and only if $p \nmid h_n$ for all $n \geq 0$.

Proof. If $p \nmid h_0$, then $p \nmid h_1$ by theorem 1. Then this implies $p \nmid h_n$ for all $n \geq 0([6])$.

THEOREM 2. Let k be a real quadratic field. Suppose that the fundamental unit of k is not a norm of a unit of k_1 . Then $p \nmid h_0$ if and only if $p \nmid h_n$ for all $n \geq 0$.

Proof. By Corollary 2, it is enough to show that $H^1(G_1, E_1) \simeq (\mathbb{Z}/p\mathbb{Z})^l$. Since $[k:\mathbb{Q}] = 2$, l = 1 or 2. If l = 1, there is nothing to prove by the theorem in the introduction or by the remark after Theorem 1. So we may assume l = 2 and we will show that $H^1(G_1, E_1) \simeq (\mathbb{Z}/p\mathbb{Z})^2$. Then the theorem follows from Corollary 2.

The condition of Theorem 2 says that $\hat{H}^0(G_1, E_1)$ is nontrivial. Hence $\hat{H}^0(G_1, E_1)$ has $\mathbb{Z}/p\mathbb{Z}$ as its subgroup. Since the Herband quotient for E_1 is p ([9]), ${}^\#H^1(G_1, E_1) = p^\#\hat{H}^0(G_1, E_1)$. Thus $p^2 \mid {}^\#H^1(G_1, E_1)$. But $H^1(G_1, E_1)$ injects into $(\mathbb{Z}/p\mathbb{Z})^2$ by the sequence (1). Therefore $H^1(G_1, E_1) \simeq (\mathbb{Z}/p\mathbb{Z})^2$ and this completes the proof.

References

- [1] B. Ferrero, L. Washington, The Iwasawa invariant μ_p vanishes for abelian number fields, Ann. Math. **109** (1979), 377-395.
- R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284.
- [3] K. Iwasawa, On \mathbb{Z}_l -extensions of algebraic number fields, Ann. Math. 98 (1973), 246-326.

- [4] K. Iwasawa, On cohomology groups of units for \mathbb{Z}_p -extensions, Amer. J. Math. **105 No. 1** (1983), 189-200.
- [5] J. M. Kim, Cohomology groups of cyclotomic units, J. Alg. 152 No. 2 (1992), 514-519.
- [6] J. M. Kim, Class numbers of real quadratic fields, Bull. Austral. Math. Soc. 57 (1998), 261-274.
- [7] S. Lang, Cyclotomic Fields II, G.T.M. 69, Springer-Verlag, New York, 1980.
- [8] S. I. Oh, Ph.D. thesis, Inha University, 1999.
- [9] J. P. Serre, Local fields, G.T.M. 67, Springer-Verlag, New York, 1979.
- [10] W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980), 181-234.
- [11] L. Washington, Introduction to Cyclotomic Fields, G.T.M. 83, Springer-Verlag, New York, 1980.

Department of Mathematics Inha University Incheon, 402-751, Korea