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ON THE IDEAL CLASS GROUPS OF
Zp-EXTENSIONS OVER REAL ABELIAN FIELDS

Jae Moon Kim, Ja Do Ryu

Abstract. Let k be a real abelian field and k∞ =
⋃

n≥0 kn be its

Zp-extension for an odd prime p. For each n ≥ 0, we denote the

class number of kn by hn. The following is a well known theorem:

Theorem. Suppose p remains inert in k and the prime ideal of

k above p totally ramifies in k∞. Then p - h0 if and only if p - hn

for all n ≥ 0.

The aim of this paper is to generalize above theorem:

Theorem 1. Suppose H1(Gn, En) ' (Z/pnZ)l, where l is the
number of prime ideals of k above p. Then p - h0 if and only if

p - hn.

Theorem 2. Let k be a real quadratic field. Suppose that

H1(G1, E1) ' (Z/pZ)l. Then p - h0 if and only if p - hn for all

n ≥ 0.

1. Introduction

Let k be a number field. For each prime p, let k∞ be a Zp-extension
of k. Namely, k∞ is an extension of k whose Galois group over k is
isomorphic to the additive group of the p-adic integers Zp.

By infinite Galois theory, to each closed subgroup pnZp of Zp, there
corresponds a unique intermediate field kn such that Gal(kn/k) '
Zp/pnZp ' Z/pnZ and that k∞ =

⋃
n≥0 kn.

For example, Q(ζp∞) =
⋃

n≥1 Q(ζpn) is a Zp-extension of Q(ζp),
where ζpn is a primitive pnth root of 1. Let Qn be the unique subfield
of Q(ζpn+1) whose degree over Q is pn. Then Q∞ =

⋃
n≥0 Qn is a
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Zp-extension of Q. In general, for any number field k, k∞ = kQ∞
is a Zp-extension of k and such a Zp-extension is called the basic (or
cyclotomic) Zp-extension of k. Thus every number field has at least one
Zp-extension. When k is a totally real field, Leopoldt conjecture asserts
that k admits only one Zp-extension, namely the basic Zp-extension.
And Leopoldt conjecture is valid when k is a real abelian field ([11]).

Let k∞ =
⋃

n≥0 kn be a Zp-extension of k. Let hn be the class
number of kn, and en the exact power of p in hn, i.e., pen ||hn. Then,
by Iwasawa theory, there are integers µ, λ ≥ 0 and ν such that en =
µpn + λn + ν for n � 0 ([3]). These constants are called the Iwasawa
invariants of k∞ over k. In 1979, Ferrero and Washington ([1]) proved
that µ = 0 when k is an abelian field and k∞ is the basic Zp-extension
of k. Around at the same time, Greenberg conjectured that λ = 0 if
k is a totally real field and gave a number of examples supporting the
conjecture ([2]). Therefore, if Greenberg conjecture holds for a real
abelian field k, then µ = λ = 0 and thus en = ν is a constant for
n � 0, which is independent of n.

It might happen that p - hn for all n ≥ 0, i.e., µ = λ = ν = 0.
The aim of this paper is to study when this happens. In certain cases,
p - h0 is necessary and sufficient for p - hn for all n ≥ 0. For instance,
we have the following theorem ([11]):

Theorem. Suppose p remains inert in k and the prime ideal of k
above p totally ramifies in k∞. Then p - h0 if and only if p - hn for all
n ≥ 0.

In this paper we study generalizations of above theorem. Namely,
we will find conditions under which the statement “p - h0 if and only
if p - hn” is true.

2. Units and circular units

Let k be a real abelian field such that k ∩Q∞ = Q and consider its
basic Zp-extension k∞ =

⋃
n≥0 kn for an odd prime p such that p - h0

and p - fϕ(f), where f is the conductor of k. Let En be the unit group
of kn and Cn the subgroup of En consisting of circular units defined
by Sinnott ([10]). Let Bn be the Sylow p-subgroup of En/Cn, and An

that of the ideal class group of kn. Then the index theorem of Sinnott
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says that #An = #Bn if p is an odd prime ([10]).
In this section, we introduce two exact sequences involving coho-

mology groups of units and circular units. The first one is well known
and we omit its proof. For details, refer to [7].

Let In be the ideal group of kn and Pn its subgroup generated by
principal ideals. Then we have the following exact sequence ([7]):

0 → H1(Gn, En) → IGn
n /P0 → (In/Pn)Gn →

Ker(Ĥ0(Gn, En) → Ĥ0(Gn, k×n )) → 0,

where Gn is the Galois group Gal(kn/k).
Since we are assuming p - h0, I0/P0 = {0}. Thus we get

(1) 0 → H1(Gn, En) → IGn
n /I0 → AGn

n →

Ker(Ĥ0(Gn, En) → Ĥ0(Gn, k×n )) → 0.

For the second exact sequence, we need a lemma.

Lemma 1. Let Gm,n = Gal(km/kn) for m > n ≥ 0. Then we have

C
Gm,n
m = Cn.

Proof. Let Km = Q(ζpm+1f ) and Kn = Q(ζpn+1f ). Then it is known

that C
Gm,n

m = Cn, where Cm (Cn, respectively) is the group of cyclo-
tomic units of Km (Kn, respectively) ([5]). Obviously, Cn ⊂ C

Gm,n
m .

To prove C
Gm,n
m ⊂ Cn, take u ∈ C

Gm,n
m . We will show that ud ∈ Cn

and upm−n ∈ Cn, where d = [Q(ζpf ) : k]. Then, since (d, pm−n) = 1,
we have u ∈ Cn.

First, we view u as an element in C
Gm,n

m . Since C
Gm,n

m = Cn, u ∈
Cn ∩ km ⊂ kn. Therefore NKn/kn

(u) = ud ∈ Cn. Next, note that
upm−n

= Nkm/kn
(u) since u is fixed under Gm,n. Thus upm−n

=
Nkm/kn

(u) ∈ Cn. This proves the lemma. �

From the short exact sequence

0 → Cn → En → Bn → 0,
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we have a long exact sequence

0 → CGn
n → EGn

n → BGn
n → H1(Gn, Cn) →

H1(Gn, En) → H1(Gn, Bn) → · · · .

Since Cn
Gn = C0 and En

Gn = E0, the first four terms of above se-
quence read:

0 → C0 → E0 → BGn
n → H1(Gn, Cn) → · · · .

Thus we have

0 → BGn
n /B0 → H1(Gn, Cn) → · · · .

By the index theorem of Sinnott ([10]), B0 = A0 = {0}. Therefore we
obtain

(2) 0 → BGn
n → H1(Gn, Cn) → H1(Gn, En) → H1(Gn, Bn) → · · · .

3. Main theorems

Let k be a real abelian field and l the number of prime ideals of k
above p.

Theorem 1. Suppose that H1(Gn, En) ' (Z/pnZ)l. Then p - h0 if
and only if p - hn.

Remarks.

(1) It is known that lim−→H1(Gn, En) ' (Qp/Zp)l, where the limit
is taken under the inflation maps ([4]). Also, from the exact
sequence (1) in Section 2, H1(Gn, En) ↪→ IGn

n /I0 ' (Z/pnZ)l.
Thus it is plausible that H1(Gn, En) ' (Z/pnZ)l. But this is
not always the case. For instance, when k = Q(

√
85) and p = 3,

3 - h0 but 3 | h1. Thus H1(G1, E1) 6' (Z/pZ)2.
(2) Suppose that l = 1, i.e., p remains inert in k. Let πn be a

prime element of Qn. Then πσ−1
n is an element of H1(Gn, En)

of order pn. Thus Z/pnZ is a subgroup of H1(Gn, En). On
the other hand, by (1) of Section 2, H1(Gn, En) is a subgroup
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of In
Gn/I0 ' Z/pnZ. Therefore H1(Gn, En) ' Z/pnZ when p

remains inert. Thus the hypothesis of Theorem 1 is satisfied in
this case. Hence p - h0 if and only if p - hn. But this is nothing
but the theorem in the introduction. Therefore Theorem 1
can be thought of as a generalization of the theorem in the
introduction.

Proof of theorem. By class field theory, p - hn implies p - h0. We
will prove the converse.

First, we claim that the map H1(Gn, Cn) → H1(Gn, En) in (2) is
surjective. Let C∞ =

⋃
n≥0 Cn, E∞ =

⋃
n≥0 En and B∞ =

⋃
n≥0 Bn.

By taking direct limits under the inflation maps of the exact sequence
(2), we obtain

0 → BΓ
∞ → H1(Γ, C∞) → H1(Γ, E∞) → · · · ,

where Γ = Gal(k∞/k). Note that BΓ
∞ is finite, and that H1(Γ, C∞) '

(Qp/Zp)l ([8]). Since H1(Gn, En) ' (Z/pnZ)l , H1(Γ, E∞) = (Qp/Zp)l

by taking limits. Thus H1(Γ, C∞) → H1(Γ, E∞) is surjective since
(Qp/Zp)l has no finite nontrivial cokernel. Now consider the following
commutative diagram:

0 → BGn
n → H1(Gn, Cn) → H1(Gn, En) → H1(Gn, Bn)
↓ ↓ ↓ ↓

0 → BΓ
∞ → H1(Γ, C∞) → H1(Γ, E∞) → 0

where vertical maps are inflation maps. From the injectivity of the
inflation map H1(Gn, En) → H1(Γ, E∞), we see that H1(Gn, En) →
H1(Gn, Bn) is the zero map. Thus H1(Gn, Cn) → H1(Gn, En) is sur-
jective.

Then the sequence (2) in Section 2 reads:

0 → BGn
n → H1(Gn, Cn) → H1(Gn, En) → 0.

Since H1(Gn, Cn) ' (Z/pnZ)l ' H1(Gn, En)([8]), BGn
n must be triv-

ial. Therefore Bn = {0}. Hence An = {0} by the index theorem. This
finishes the proof. �
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Corollary 1. Suppose p - h0. If H1(Gn, En) ' (Z/pnZ)l, then
E0 ∩Nkn/k(k×n ) = Nkn/k(En).

Proof. By Theorem 1, An = {0}. So AGn
n = {0}. Then by the

sequence (1) in Section 2, Ker((Ĥ0(Gn, En) → Ĥ0(Gn, k×n )) = 0.
Thus Ĥ0(Gn, En) → Ĥ0(Gn, k×n ) is injective, i.e., E0/Nkn/k(En) →
k×/Nkn/k(k×n ) is injective. Therefore E0 ∩Nkn/k(k×n ) = Nkn/k(En).�

When k is a real quadratic field, one can say a little more.

Corollary 2. Let k be a real quadratic field, and suppose that
H1(G1, E1) ' (Z/pZ)l. Then p - h0 if and only if p - hn for all n ≥ 0.

Proof. If p - h0, then p - h1 by theorem 1. Then this implies p - hn

for all n ≥ 0([6]). �

Theorem 2. Let k be a real quadratic field. Suppose that the
fundamental unit of k is not a norm of a unit of k1. Then p - h0 if and
only if p - hn for all n ≥ 0.

Proof. By Corollary 2, it is enough to show that H1(G1, E1) '
(Z/pZ)l. Since [k : Q] = 2, l = 1 or 2. If l = 1, there is nothing to prove
by the theorem in the introduction or by the remark after Theorem 1.
So we may assume l = 2 and we will show that H1(G1, E1) ' (Z/pZ)2.
Then the theorem follows from Corollary 2. �

The condition of Theorem 2 says that Ĥ0(G1, E1) is nontrivial.
Hence Ĥ0(G1, E1) has Z/pZ as its subgroup. Since the Herband quo-
tient for E1 is p ([9]), #H1(G1, E1) = p#Ĥ0(G1, E1). Thus p2 |
#H1(G1, E1). But H1(G1, E1) injects into (Z/pZ)2 by the sequence
(1). Therefore H1(G1, E1) ' (Z/pZ)2 and this completes the proof.
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