• Title/Summary/Keyword: power-delay product

Search Result 79, Processing Time 0.026 seconds

Design of a Low-Power CVSL Full Adder Using Low-Swing Technique (Low-Swing 기술을 이용한 저 전력 CVSL 전가산기 설계)

  • Kang Jang Hee;Kim Jeong Beom
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.2 s.332
    • /
    • pp.41-48
    • /
    • 2005
  • In this paper, we propose a new Low-Swing CVSL full adder for low power consumption. An $8\times8$ parallel multiplier is used for the comparison between the proposed Low-Swing CVSL full adder with conventional CVSL full adder. Comparing the previous works, this circuit is reduced the power consumption rate of $13.1\%$ and the power-delay-product of $14.3\%$. The validity and effectiveness of the proposes circuits are verified through the HSPICE under Hynix $0.35{\mu}m$ standard CMOS process.

Design of a Full-Adder Using Current-Mode Multiple-Valued Logic CMOS Circuits (전류 모드 CMOS 다치 논리 회로를 이용한 전가산기 설계)

  • Won, Young-Uk;Kim, Jong-Soo;Kim, Jeong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.275-278
    • /
    • 2003
  • This paper presents a full-adder using current-mode multiple valued logic CMOS circuits. This paper compares propagation delay, power consumption, and PDP(Power Delay Product) compared with conventional circuit. This circuit is designed with a samsung 0.35um n-well 2-poly 3-metal CMOS technology. Designed circuits are simulated and verified by HSPICE. Proposed full-adder has 2.25 ns of propagation delay and 0.21 mW of power consumption.

  • PDF

Variable latency L1 data cache architecture design in multi-core processor under process variation

  • Kong, Joonho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.1-10
    • /
    • 2015
  • In this paper, we propose a new variable latency L1 data cache architecture for multi-core processors. Our proposed architecture extends the traditional variable latency cache to be geared toward the multi-core processors. We added a specialized data structure for recording the latency of the L1 data cache. Depending on the added latency to the L1 data cache, the value stored to the data structure is determined. It also tracks the remaining cycles of the L1 data cache which notifies data arrival to the reservation station in the core. As in the variable latency cache of the single-core architecture, our proposed architecture flexibly extends the cache access cycles considering process variation. The proposed cache architecture can reduce yield losses incurred by L1 cache access time failures to nearly 0%. Moreover, we quantitatively evaluate performance, power, energy consumption, power-delay product, and energy-delay product when increasing the number of cache access cycles.

Design of QDI Model Based Encoder/Decoder Circuits for Low Delay-Power Product Data Transfers in GALS Systems (GALS 시스템에서의 저비용 데이터 전송을 위한 QDI모델 기반 인코더/디코더 회로 설계)

  • Oh Myeong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.1 s.343
    • /
    • pp.27-36
    • /
    • 2006
  • Conventional delay-insensitive (DI) data encodings usually require 2N+1 wires for transferring N-bit. To reduce complexity and power dissipation of wires in designing a large scaled chip, an encoder and a decoder circuits, where N-bit data transfer can be peformed with only N+l wires, are proposed. These circuits are based on a quasi delay-insensitive (QDI) model and designed by using current-mode multiple valued logic (CMMVL). The effectiveness of the proposed data transfer mechanism is validated by comparisons with conventional data transfer mechanisms using dual-rail and 1-of-4 encodings through simulation at the 0.25 um CMOS technology. In general, simulation results with wire lengths of 4 mm or larger show that the CMMVL scheme significantly reduces delay-power product ($D{\ast}P$) values of the dual-rail encoding with data rate of 5 MHz or more and the 1-of-4 encoding with data rate of 18 MHz or more. In addition, simulation results using the buffer-inserted dual-rail and 1-of-4 encodings for high performance with the wire length of 10 mm and 32-bit data demonstrate that the proposed CMMVL scheme reduces the D*P values of the dual-rail encoding with data rate of 4 MHz or more and 1-of-4 encoding with data rate of 25 MHz or more by up to $57.7\%\;and\;17.9\%,$ respectively.

Multiple-Valued Logic Multiplier for System-On-Panel (System-On-Panel을 위한 다치 논리 곱셈기 설계)

  • Hong, Moon-Pyo;Jeong, Ju-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.2
    • /
    • pp.104-112
    • /
    • 2007
  • We developed a $7{\times}7$ parallel multiplier using LTPS-TFT. The proposed multiplier has multi-valued logic 7-3 Compressor with folding, 3-2 Compressor, and final carry propagation adder. Architecture minimized the carry propagation. And power consumption reduced by switching the current source to the circuit which is operated in current mode. The proposed multiplier improved PDP by 23%, EDP by 59%, and propagation delay time by 47% compared with Wallace Tree multiplier.

Design and Implementation of a Sequential Polynomial Basis Multiplier over GF(2m)

  • Mathe, Sudha Ellison;Boppana, Lakshmi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2680-2700
    • /
    • 2017
  • Finite field arithmetic over GF($2^m$) is used in a variety of applications such as cryptography, coding theory, computer algebra. It is mainly used in various cryptographic algorithms such as the Elliptic Curve Cryptography (ECC), Advanced Encryption Standard (AES), Twofish etc. The multiplication in a finite field is considered as highly complex and resource consuming operation in such applications. Many algorithms and architectures are proposed in the literature to obtain efficient multiplication operation in both hardware and software. In this paper, a modified serial multiplication algorithm with interleaved modular reduction is proposed, which allows for an efficient realization of a sequential polynomial basis multiplier. The proposed sequential multiplier supports multiplication of any two arbitrary finite field elements over GF($2^m$) for generic irreducible polynomials, therefore made versatile. Estimation of area and time complexities of the proposed sequential multiplier is performed and comparison with existing sequential multipliers is presented. The proposed sequential multiplier achieves 50% reduction in area-delay product over the best of existing sequential multipliers for m = 163, indicating an efficient design in terms of both area and delay. The Application Specific Integrated Circuit (ASIC) and the Field Programmable Gate Array (FPGA) implementation results indicate a significantly less power-delay and area-delay products of the proposed sequential multiplier over existing multipliers.

Approximate Multiplier with High Density, Low Power and High Speed using Efficient Partial Product Reduction (효율적인 부분 곱 감소를 이용한 고집적·저전력·고속 근사 곱셈기)

  • Seo, Ho-Sung;Kim, Dae-Ik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.671-678
    • /
    • 2022
  • Approximate computing is an computational technique that is acceptable degree of inaccurate results of accurate results. Approximate multiplication is one of the approximate computing methods for high-performance and low-power computing. In this paper, we propose a high-density, low-power, and high-speed approximate multiplier using approximate 4-2 compressor and improved full adder. The approximate multiplier with approximate 4-2 compressor consists of three regions of the exact, approximate and constant correction regions, and we compared them by adjusting the size of region by applying an efficient partial product reduction. The proposed approximate multiplier was designed with Verilog HDL and was analyzed for area, power and delay time using Synopsys Design Compiler (DC) on a 25nm CMOS process. As a result of the experiment, the proposed multiplier reduced area by 10.47%, power by 26.11%, and delay time by 13% compared to the conventional approximate multiplier.

An Implemention of Low Power 16bit ELM Adder by Glitch Reduction (글리치 감소를 통한 저전력 16비트 ELM 덧셈기 구현)

  • 류범선;이기영;조태원
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.5
    • /
    • pp.38-47
    • /
    • 1999
  • We have designed a 16bit adder which reduces the power consumption at each level of architecture, logic and transistor. The conventional ELM adder has a major disadvantage which makes glitch in the G cell when the particular input bit patterns are applied, because of the block carry generation signal computed by the input bit pattern. Thus, we propose a low power adder architecture which can automatically transfer each block carry generation signal to the G cell of the last level to avoid glitches for particular input bit patterns at the architecture level. We also use a combination of logic styles which is suitable for low power consumption with static CMOS and low power XOR gate at the logic level. Futhermore, The variable-sized cells are used for reduction of power consumption according to the logic depth of the bit propagation at the transistor level. As a result of HSPICE simulation with $0.6\mu\textrm{m}$ single-poly triple-metal LG CMOS standard process parameter, the proposed adder is superior to the conventional ELM architecture with fixed-sized cell and fully static CMOS by 23.6% in power consumption, 22.6% in power-delay-product, respectively.

  • PDF

A design of high speed and low power 16bit-ELM adder using variable-sized cell (가변 크기 셀을 이용한 저전력 고속 16비트 ELM 가산기 설계)

  • 류범선;조태원
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.8
    • /
    • pp.33-41
    • /
    • 1998
  • We have designed a high speed and low power 16bit-ELM adder with variable-sized cells uitlizing the fact that the logic depth of lower bit position is less than that of the higher bit position int he conventional ELM architecture. As a result of HSPICE simulation with 0.8.mu.m single-poly double-metal LG CMOS process parameter, out 16bit-ELM adder with variable-sized cells shows the reduction of power-delay-product, which is less than that of the conventional 16bit-ELM adder with reference-sized cells by 19.3%. We optimized the desin with various logic styles including static CMOs, pass-transistor logic and Wang's XOR/XNOR gate. Maximum delay path of an ELM adder depends on the implementation method of S cells and their logic style.

  • PDF

Design of a Low-Power Parallel Multiplier Using Low-Swing Technique (저 전압 스윙 기술을 이용한 저 전력 병렬 곱셈기 설계)

  • Kim, Jeong-Beom
    • The KIPS Transactions:PartA
    • /
    • v.14A no.3 s.107
    • /
    • pp.147-150
    • /
    • 2007
  • This paper describes a new low-swing inverter for low power consumption. To reduce a power consumption, an output voltage swing is in the range from 0 to VDD-2VTH. This can be done by the inverter structure that allow a full swing or a swing on its input terminal without leakage current. Using this low-swing voltage technology, we proposed a low-power 16$\times$16 bit parallel multiplier. The proposed circuits are designed with Samsung 0.35$\mu$m standard CMOS process at a 3.3V supply voltage. The validity and effectiveness are verified through the HSPICE simulation.. Compared to the previous works, this circuit can reduce the power consumption rate of 17.3% and the power-delay product of 16.5%.