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Abstract 
 

Finite field arithmetic over GF(2m) is used in a variety of applications such as cryptography, 
coding theory, computer algebra. It is mainly used in various cryptographic algorithms 
such as the Elliptic Curve Cryptography (ECC), Advanced Encryption Standard (AES), 
Twofish etc. The multiplication in a finite field is considered as highly complex and 
resource consuming operation in such applications. Many algorithms and architectures are 
proposed in the literature to obtain efficient multiplication operation in both hardware and 
software. In this paper, a modified serial multiplication algorithm with interleaved modular 
reduction is proposed, which allows for an efficient realization of a sequential polynomial 
basis multiplier. The proposed sequential multiplier supports multiplication of any two 
arbitrary finite field elements over GF(2m) for generic irreducible polynomials, therefore 
made versatile. Estimation of area and time complexities of the proposed sequential 
multiplier is performed and comparison with existing sequential multipliers is presented. 
The proposed sequential multiplier achieves 50% reduction in area-delay product over the 
best of existing sequential multipliers for m = 163, indicating an efficient design in terms of 
both area and delay. The Application Specific Integrated Circuit (ASIC) and the Field 
Programmable Gate Array (FPGA) implementation results indicate a significantly less 
power-delay and area-delay products of the proposed sequential multiplier over existing 
multipliers. 
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1. Introduction 

Security of information has become a crucial issue now-a-days because of vast 
technological developments in the field of computers and internet. Cryptography is used in 
information security to prevent unauthorized or accidental disclosure of information while 
in transit across an insecure medium. Modern cryptography came into existence with the 
advent of computer technology, and mainly deals with development of algorithms to hide 
information whose strength lies in the mathematical theory and computational hardness 
assumptions. It can be classified into two types: symmetric cryptosystem and asymmetric 
cryptosystem [1]. Symmetric cryptosystem uses same secret key for both the encryption 
and decryption process, whereas the asymmetric cryptosystem uses different keys. Data 
encryption standard (DES) [2] and advanced encryption standard (AES) [3] are some 
examples for symmetric cryptosystem, and elliptic curve cryptography (ECC) [4-5] and 
RSA [6] are some examples for asymmetric cryptosystem. 

The complexity of many cryptographic schemes, when implemented in hardware, 
depends mainly on arithmetic operations in finite fields. The basic finite field operations 
are addition, subtraction, multiplication, division, exponentiation and inversion. A simple 
exclusive-OR (XOR) can realize the addition and subtraction operations. More complex 
operations such as division, exponentiation and inversion can be realized using repeated 
multiplication operations [7-9]. Therefore, the multiplication operation is the basic unit for 
all the arithmetic operations involved in a finite field. Many practical applications exist for 
finite field arithmetic – cryptography [10], error correcting codes [11], pseudo random 
number generation [12] and Reed-Solomon codes [13]. Particularly in cryptography, 
elliptic curve cryptosystems and some symmetric cryptosystems utilize the arithmetic 
operations involved in binary extension fields GF(2m) and prime fields GF(p) [14-16]. 
However, binary extension fields offer efficient hardware realizations compared to prime 
fields due to their carry-free addition property.  

Three popular basis representations exist for finite fields: Normal Basis (NB), 
Polynomial Basis (PB) and Dual Basis (DB) [17], and each basis has its own distinct 
advantages. The hardware implementations of NB multipliers typically consume less 
power compared to other bases and it is attractive for cryptosystems that utilize frequent 
squaring. Multiplications in PB are relatively easy and less complex whereas the hardware 
implementations consume more power compared to NB multipliers. The DB multipliers 
require lesser area than the other two bases. However, PB multipliers are the most popular 
among the three because they can be matched to the input or output of any system, whereas 
the NB and DB multipliers require basis conversion.  

The finite field GF(2m) is characterized by an irreducible polynomial. An irreducible 
polynomial (T) is said to be irreducible over GF(2m) if T cannot be factored into two 
product polynomials, where the product polynomials should belong to the above said field. 
There are various types of irreducible polynomials which characterize the finite field 
multipliers. They are general/generic polynomials [18], trinomials [19], pentanomials [20], 



2682                                Mathe et al.: Design and Implementation of a Sequential Polynomial Basis Multiplier over GF(2m) 

all-one polynomials (AOP) [21], equally-spaced polynomials (ESP) [18] etc., which are 
recommended for cryptographic applications. The ESPs are polynomials whose terms are 
equally spaced (in degree) by r. The trinomials, pentanomials and AOPs are special cases 
of ESPs and they are distinguished based on the spacing of the terms. The generic 
polynomials can have a random number of terms and random spacing between the terms. 
The multipliers based on trinomials and pentanomials have relatively lower hardware 
complexity when compared to other classes of irreducible polynomials due to less number 
of terms and consequently lower computational complexity. On the other hand, these 
multipliers cannot be utilized in all the applications due to the limitation of fixed number of 
terms. The multipliers based on AOPs require more hardware complexity compared to the 
multipliers based on trinomials or pentanomials due to more number of terms and 
consequently higher computational complexity. On the contrary, the ease of representation 
of AOP facilitates efficient implementations and simpler structures in hardware. The ESPs 
are well structured and have higher hardware complexity compared to AOP multipliers. 
The hardware complexity of the multipliers based on generic polynomials cannot be 
determined beforehand due to the randomness in the number of terms of the polynomials. 
Therefore, the multipliers for generic polynomials are highly generic and operate on any 
type of polynomials.  

Various algorithms are proposed in the literature to perform finite field multiplications 
such as the Karatsuba-Ofman algorithm [22], Montgomery multiplication algorithm [23], 
Mastrovito multiplier [24], Cantor multiplier [25] and the FFT multipliers [26]. These 
algorithms were proposed to reduce the complexity of multiplication operation and to 
achieve well-suited hardware implementations. Consequently, a variety of hardware 
architectures have been reported in the literature for polynomial basis multiplication such 
as: parallel [18][27], sequential [28-29] and pipelined [30-32] architectures. The parallel 
architectures can implement the multiplication operation in less clock cycles while 
increasing the area, whereas the sequential architectures require more clock cycles while 
reducing the area. Pipelined architectures achieve a balance of both time and area 
complexities. Bit-serial [27], [30-33], digit-serial [27], [29], [31], [34], [35], and 
bit-parallel [18], [19], [27-28], [36] designs have also been proposed by many researchers. 
Bit-serial architectures require more clock cycles utilizing lesser area, whereas the 
bit-parallel architectures utilize more area and require less clock cycles to perform the 
multiplication operation. The digit-serial architectures offer trade-off between area and 
speed. Several systolic [27], [31], [34], [37], [38], semi-systolic [30], [39], [40] and 
non-systolic [27], [41], [42] bit-parallel architectures are proposed in the literature. Systolic 
architectures have several replicas of the same structure to perform fast computations with 
large area overheads. The non-systolic architectures have a single structure offering less 
area overhead and low speed when compared to the systolic designs. The semi-systolic 
architectures achieve a trade-off between speed and area. 

In this paper, an optimized algorithm is derived based on a method of serial interleaved 
multiplication to achieve better trade-off between area complexity and delay of the 
multiplier architecture. The proposed algorithm performs multiplication with interleaved 
modular reduction of two arbitrary elements for a generic, field defining irreducible 
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polynomial. Subsequently, a versatile sequential polynomial basis multiplier is realized for 
multiplication of two elements over GF(2m). The proposed sequential multiplier achieves 
low area-delay product and results in a latency of m clock cycles. The proposed sequential 
multiplier and other sequential polynomial basis multipliers available in the literature are 
implemented in ASIC and FPGA and the proposed architecture achieves low area-delay 
product and less power consumption when compared to existing multipliers. Moreover, the 
AES and Twofish algorithms, incorporating the proposed multiplier and existing 
multipliers, are implemented in FPGA and the proposed multiplier achieves significantly 
low power-delay and area-delay products. 

The organization of this paper is as follows: preliminaries of conventional polynomial 
basis multiplication is presented in section 2, section 3 presents the proposed polynomial 
basis multiplier, section 4 gives the complexity analysis and implementation results, 
followed by conclusions in Section 5. 

2. Preliminaries 
The conventional polynomial basis (PB) representation and multiplication of the field 
elements over GF(2m) is presented in this section [43]. GF(2m) is an extension field of 
GF(2) having an m-dimensional vector space over it, where GF(2) is a binary field having 
only two elements {0, 1}. The addition and subtraction operations can be performed by the 
logical exculsive-OR (XOR) operation and the multiplication operation can be performed 
by the logical AND operation over GF(2). However, the multiplication over GF(2m) is 
performed by multiplying the two polynomials and modular reducing the result by the 
irreducible polynomial.  
Definition 1: Let T(x) be the irreducible polynomial of degree m over GF(2) which defines 
the field GF(2m). Then, 
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1

1 ...)( txtxtxxT m
m

m ++++= −
−  

(1) 
where, t0, t1, · · · , tm-1 ∈ GF(2). 
Definition 2: Let α ∈ GF(2m) be a root of T(x). Then the following set constitutes the 
polynomial basis in GF(2m) 

{ }12 ,...,,,1 −=Ω mααα  
(2) 

Definition 3: In Ω, the elements of GF(2m) are polynomials of degree at most m-1 over 
GF(2). Then, the set of all polynomials in GF(2m) is 
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where, gi ∈ GF(2); for i = 0, 1, 2, … , m-1. 
Definition 4: Let 01
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− be a polynomial in GF(2m), then the binary 

representation of this polynomial is 
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( )011 ,,..., gggg m−=  
(4) 

where, gi ∈ GF(2) and gm-1 is the most significant bit (MSB) and g0 is the least significant 
bit (LSB); for i = 0, 1, 2, … , m-1. Let the polynomials A(x) and B(x) be the two field 
elements, T(x) be the field defining irreducible polynomial and D(x) be the final product 
polynomial. Then, 

( ) )(mod)()()( xTxBxAxD ×=  
(5) 

Polynomial multiplication: The product of A(x) and B(x), each of degree at most m-1, 
results in an intermediate polynomial given by 

)()()( xBxAxC ×=  
( ) )...(... 1

110
1

110
−

−
−

− +++×+++= m
m

m
m xbxbbxaxaa  

m
m xcxcc 2

2210 ... −+++=  
(6) 

Modular reduction: The intermediate polynomial C(x) of degree at most 2m-2 is modular 
reduced by a degree m irreducible polynomial T(x) resulting in the polynomial D(x) of 
degree at most m-1 which is the final result of the multiplication operation. 
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Thus the multiplication of two polynomials of degree m-1 results in a polynomial of degree 
m-1 such that the resultant polynomial resides in the given field GF(2m). 

3. Proposed Sequential Polynomial Basis Multiplier 
Various algorithms for fast computation of multiplications over finite fields are available in 
the literature. Among them, the multiplication algorithms with interleaved modular 
reduction provide a simple, fast and efficient multiplication technique wherein the 
multiplication and modular reduction are performed simultaneously. In this section, a serial 
interleaving multiplication algorithm [44] is analyzed and transformed into a modified 
serial multiplication algorithm with interleaved modular reduction over GF(2m), efficient 
for realizing low hardware architectures. The proposed algorithm efficiently transforms the 
polynomial multiplications into much simpler logical exclusive-OR, AND and shift 
operations thus obtaining simpler hardware structures by distributing them over m 
iterations. A versatile sequential polynomial basis multiplier architecture realized from the 
proposed algorithm is also presented in this section. 
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3.1 Proposed Finite Field Multiplication Algorithm with Interleaved Modular 
Reduction 
Let a = (am-1, … , a1, a0) and b = (bm-1, … ,b1, b0) be the binary representations of the two 
elements, A(x) and B(x), over GF(2m), respectively. Let t = (tm-1, … , t1, t0) be the binary 
representation of the field defining irreducible polynomial T(x) of degree at most m, and let 
p = (pm-1, … , p1,  p0) be the accumulator of the intermediate calculations. The proposed 
algorithm is given in Algorithm1.  
 

Algorithm1: Proposed multiplication algorithm 
with interleaved modular reduction over GF(2m)  
1: INITIALIZATION: p = 0, counter = 0 
2: FOR counter = 0 TO m-1 DO                            
3: p = p ⊕ (a & b0)                       &: Logical AND operation 
4: am = am-1                                  ⊕: Logical XOR operation 
5: a = a << 1                                         <<: Left shift operation 
6: a = a ⊕ (t & am) 
7: b = b >> 1                                       >>: Right shift operation 
8: END FOR 

 
Proof of Algorithm1: The two arbitrary elements A(x) and B(x) in GF(2m) can be expressed 
as 

∑
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Let C(x) ∈ GF(2m) be the product polynomial of the two elements A(x) and B(x). 
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                 (9) 
It may be observed from (9) that C(x) is the summation of the multiplication result of bi and 
A(x).xi; for all i = 0, 1, … , m-1 i.e. the entire summation is carried out in m iterations. 
A(x).xi is calculated by the modular reduction step which is then multiplied with bi using 
AND operation; for all i = 0, 1, … , m-1. Contrary to the generic case of summation by 
addition, the exclusive-OR (XOR) operation is considered for the summation of each 
bi.A(x).xi; for all i = 0, 1, … , m-1, since the addition is simply an XOR operation over 
GF(2). Hence, the calculation of C(x) in (9) is transformed as Steps 3, 4, 8 in Algorithm1. 
Here, p = (pm-1, … , p1, p0) acts as the accumulator of A(x)xi and is initialized to zero at the 
beginning of each multiplication operation. 

The modular reduction in the serial interleaving multiplication algorithm [44] is 
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performed as given below 
)(mod)()( xTxxAxA i×=  

(10) 
(10) is evaluated for each i as follows 
For i = 0: 
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A degree m polynomial cannot modulo divide a degree m-1 polynomial. Hence, this step 
can be skipped. 
For i = 1: 
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It is revealed from (12) that the modular reduction is reduced to the summation of am-1.T(x) 
and A(x).xi. The A(x).xi is computed by left shifting A(x) by i times; for all i = 0, 1, 2, … , 
m-1. This result is also used in the polynomial multiplication step given above. The 
am-1.T(x) is computed by bit-wise AND operation of am-1 with the binary representation of 
T(x) i.e. (tm-1, … , t1, t0). The summation is carried out in m iterations using the XOR 
operation. Therefore, the modular reduction step can be transformed as Steps 5, 6, 7 in 
Algorithm1. 

Both the polynomial multiplication and modular reduction steps occur simultaneously 
and thereby resulting in an interleaved algorithm. The two transformed algorithms for 
polynomial multiplication and modular reduction work in cohesion resulting in the 
proposed algorithm – Algorithm1. 

3.2 Proposed Sequential Polynomial Basis Multiplier Architecture 
Fig. 1 shows the versatile sequential polynomial basis multiplier realized from the 
proposed algorithm. The top-level architecture is comprised of two main modules A and B 
and three m-bit registers. The multiplier takes one m-bit input – t; where, t denotes the 
binary representation of the irreducible polynomial. Module A computes the polynomial 
multiplication and module B computes the modular reduction. The logic diagrams of the 
modules A and B are shown in Fig. 2 and Fig. 3 respectively. The inputs of module A are a, 
b0, p and output is pout. In module A, an AND operation is performed on a with the LSB of 
b, b0, to obtain an m-bit result, aa. aa is bit-wise XORed with the input p which results in 
the output of module A i.e. pout. The inputs of module B are a, b, t and outputs are anew and 
bnew. In module B, b is right shifted by one bit to obtain bnew. a is left shifted by one bit to 
obtain an intermediate result, al. An AND operation is performed on t with am-1 to obtain tt. 
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Fig. 1. Top level architecture of the proposed sequential polynomial basis multiplier 

 
tt is XORed with al to obtain anew. Before the multiplication operation begins, the registers 
Reg2 and Reg3 are initialized with the multiplicands b and a respectively and Reg1 is 
cleared. For every clock cycle, module A computes the new p value given by pout and 
module B computes the new a and b values given by anew and bnew respectively. The final 
multiplication result is given by res after m clock cycles. The architecture is made versatile 
since it can perform multiplication of any two arbitrary elements a and b in GF(2m) for any 
generic, field defining irreducible polynomial, t. 

4. Complexity Analysis and Implementation Results 
In this section, estimation of area complexity and delay of the proposed sequential 
multiplier is performed, and comparison with other sequential polynomial basis multipliers 
available in the literature is presented. The comparison is performed in terms of area, delay 
and area- delay product; where area is expressed in terms of total transistor count of the 
multiplier and delay is computed as a product of critical path and latency. The application 
specific integrated circuit (ASIC) and the field programmable gate array (FPGA) 
implementation of the proposed multiplier and existing multipliers is also performed and 
the area, delay, power consumption, power-delay product and area-delay product results 
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are also presented in this section. The implementation results of the AES and Twofish 
algorithms, incorporating the proposed sequential multiplier and existing multipliers, are 
also presented in this section; since these algorithms utilize the finite field multiplications 
extensively. 
 

 
Fig. 2. Internal logic diagram of Module A 

 

 
Fig. 3. Internal logic diagram of Module B 
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4.1 Estimation and Comparison of Area and Time Complexities 
As discussed in section 3.2, the proposed sequential multiplier is comprised of three m-bit 
registers, one module A and one module B. Both module A and module B consists of m 
2-input XOR gates and m 2-input AND gates each. An m-bit register can be realized using 
m 1-bit latches. Since the proposed architecture requires three m-bit registers, the total 1-bit 
latches required is 3m. The shifting blocks, SL and SR, are comprised of only re-wiring and 
hence do not contribute to any complexity. Therefore, the total area complexity of the 
proposed architecture is 2m 2-input XOR gates, 2m 2-input AND gates and 3m 1-bit latches. 
The critical path delay of the proposed multiplier is the maximum of delays of either 
module A or module B. It can be observed from the architecture that the delays of module 
A and module B are equal i.e. TX + TA , where TX and TA are the delays of a 2- input XOR 
gate and a 2-input AND gate, respectively. Hence, the critical path delay of the multiplier is 
computed as TX + TA. As established by the proposed algorithm, the multiplication of two 
m-bit elements is computed over m iterations. Hence, the resultant latency is m clock 
cycles. 

Table 1 presents the comparison of area complexity, latency and critical path of the 
proposed multiplier with other PB multipliers [32], [39], [37], [33], [38], [30], [28], [45], 
[40], [29] available in the literature. It may be noted that TN, TO and TM denotes the delay of 
an inverter, 2-input OR gate and 2:1 multiplexer (MUX), respectively. In [32], a bit-serial 
pipelined multiplier is presented which allows variable field dimension m without any 
change in the hardware. The condition to be satisfied to achieve low circuit complexity is 1 
< m ≤ M, where M is the maximum dimension that the multiplier supports. A non-versatile 
systolic design is given in [39]. [37] presents a low-complexity bit-parallel systolic 
multiplier for irreducible trinomials. A bit-serial polynomial basis multiplier for GF(2m) is 
given in [33], where 1 < m ≤ M. M determines the maximum size the multiplier can support 
which allows for flexibility and ease of configuration. It can be noted that an additional 
demultiplexer (DMUX) and (m-1) additional OR gates are used in this multiplier. [38] 
gives a bit-parallel systolic multiplier for trinomials based on Hankel matrix-vector 
multiplications in which the standard basis multiplication is decomposed into k-term 
Hankel matrix-vector multiplications and hence the latency is obtained at m+k. A versatile 
bit-serial montgomery multiplier for generic irreducible polynomials is presented in [30]a 
and a systolic version is given in [30]b. A partially versatile, low latency sequential 
multiplier for general irreducible polynomials is given in [28] in which the condition m ≥ 
2kt-1 must hold true, where kt is the degree of the second leading term of the irreducible 
polynomial. A versatile bit-serial multiplier is proposed using MSB-first method in [45] 
having low area, flexibilty and simplicity. A partially versatile polynomial basis multiplier 
is given in [29] for any irreducible polynomial which satisfies the condition m ≥ kt+1, 
where kt is the degree of the second leading term of the irreducible polynomial. In [40], a 
semi-systolic montgomery multiplier using cellular systolic architecture with reduced time 
complexity is presented. 

In order to highlight the differences among various multiplier designs, the irreducible 
polynomial f(x) = x163+x7+x6+x3+1 recommended by National Institute of Standards and 
Technology (NIST) is considered as an example, where the order of the finite field is m = 
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163. Here, the second leading term of the irreducible polynomial, kt, is 7 for the multiplier 
of [28]. The multiplication is decomposed into three Hankel matrix-vector multiplications, 
and hence k is 3 for the multiplier of [38].  The comparison of area complexity in terms of 
gate count cannot provide a clear difference among the multipliers considered. A better 
area complexity comparison can be achieved using a common parameter – transistor count. 
Moreover, latency alone cannot achieve a fair comparison of computation time; total delay 
as a product of latency and critical path must be considered. 

 
Table 1. Comparison of area and time complexities of the proposed multiplier with existing 

multipliers over GF(2m) 
Design #XOR #AND #MUX #Latches Latency Critical Path 

[32]2 2m 3m m m2 3m (TA+TN+TO)log2m
+TX 

[39]1,6 2m2 2m2 m2 8m2 2m TX+TA 
[37]3,1,7 m2+m-1 m2 0 3m2+2m-2 2m-1 TX+TA 

[33]4,2,* m 2m ma 3m m TX+2TA+TN+ 
(m+1)TO 

[38]3,1,7 m2+m m2 0 4m2+m m+kb TX+TA 
[30]a4,2 m m 2m+1 3m 2m TX+TA 
[30]b4,1 m2-1 m2-m+1 2m2+m-3 2m2-m 2m TX+TA 
[28]5,3 (m2+m)/2 (m2+m)/2 4m 5m-1 2kt

c+1 TXlog2m+2TM+TA 
[45]2,4 2m 4m m*+m# 3m m TX+TA 
[40]1 2m2+3m 2m2+2m 0 3m2+4m m/2+1 2TX+TA 

[29]5,3 6m+18 0 14m+26 6m+7 m/4 4TX+TM 
Proposed 2m 2m 0 3m m TX+TA 

*(m-1) OR gates. #Inverters. a DMUX. b k-term Hankel matrix. c Degree of the second leading term of the irreducible 
polynomial. 1systolic or semi-systolic. 2 bit-serial. 3 bit-parallel. 4 versatile. 5 partially versatile. 6 non-versatile. 7 for 
trinomials. 

 
Table 2 provides the comparison of area complexity (in terms of total transistor count), 

total delay (latency × critical path) and area-delay product. In order to estimate the 
transistor count of individual gates, traditional CMOS logic transistor counts [28] are used: 
six transistors for a 2-input XOR gate, six for a 1-bit 2:1 MUX, six for a 1-bit 1:2 DMUX, 
six for a 2-input OR gate, six for a 2-input AND gate and eight for a 1-bit latch. Some real 
time circuits from STMicroelectronics are considered to estimate the critical path delay of 
the multipliers. The typical propagation delay (tPD) of the respective gates is considered to 
ensure fair comparison. The circuits used are M74HC86 (XOR gate, tPD = 12ns), 
M74HC257 (MUX, tPD = 11ns), M74HC08 (AND gate, tPD = 6ns), M74HC32 (OR gate, tPD 
= 8ns) and M74HC04 (INVERTER, tPD = 8ns) [28]. It can be seen from Table 2 that the 
proposed multiplier has lower area complexity and lower area-delay product when 
compared to other multipliers available in the literature. The table also provides the 
percentage reduction in area complexity and area-delay product of the multipliers available 
in the literature when compared with the proposed multiplier. It can be noted that all the 
multipliers, except multipliers in [33], [30]a, [45], [29], have over 90% area complexity 
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and area-delay product when compared to the proposed multiplier. The multipliers in [33], 
[30]a, [45], [29], when compared with the proposed multiplier, have 11.05%, 0.08%, 
29.41% and 71.76% more area complexity respectively. However, the multiplier in [33] 
has very high area-delay product due its high critical path (multiple of m). The multipliers 
in [30]a, [45], [29], when compared with the proposed multiplier, have 50%, 28.13% and 
66.17% more area-delay product respectively. In general, the area-delay product is 
considered as a trade-off parameter to determine the efficiency of an architecture in terms 
of both area and total delay; lower the product value, the more efficient is the design. As 
already discussed above, the area-delay product of the proposed multiplier is considerably 
lower when compared to other multipliers resulting in a very efficient design in terms of 
both area and delay. The resultant total delay of the proposed multiplier is moderate when 
compared to the other multipliers. 

 

Table 2. Comparison of total transistor count, total delay and area-delay product for m = 163 
recommended by NIST 

Design #Transis
-tors 

Latency 
(#Clock 
cycles) 

Critical 
Path 
(ns) 

Total 
Delay 
(ns) 

ADP 
(×106) 

% 
Reduction 

in Area 

% 
Reducti-

on in 
ADP 

[32]2 217442 489 174 85086 18501 96.40% 99.88% 
[39]1,6 2391210 326 18 5868 14032 99.67% 99.83% 
[37]3,1,7 906910 325 18 5850 5305 99.14% 99.56% 
[33]4,2,* 8796 163 1344 219072 1927 11.05% 98.81% 
[38]3,1,7 1118180 170 18 3060 3422 99.30% 99.32% 
[30]a4,2 7830 326 18 5868 46 0.08% 50% 
[30]b4,1 1008624 326 18 5868 5919 99.22% 99.61% 
[28]5,3 170816 15 106 1590 272 95.42% 91.54% 
[45]2,4 11084 163 18 2934 32 29.41% 28.13% 
[40]1 1285418 83 30 2490 3201 99.39% 99.28% 
[29]5,3 27704 41 60 2460 68 71.76% 66.17% 

Proposed 7824 163 18 2934 23 - - 
*(m-1) OR gates. #Inverters. a DMUX. b k-term Hankel matrix. c Degree of the second leading term of the irreducible 
polynomial. 1systolic or semi-systolic. 2 bit-serial. 3 bit-parallel. 4 versatile. 5 partially versatile. 6 non-versatile. 7 for 
trinomials.  

 
Table 3 compares the total transistor count for m = 163, 233, 283, 409 and 571 

recommended by NIST. It can be noted that the proposed multiplier exhibits a linear 
increase in area complexity similar to the multipliers in [33], [30]a, [45] and [29], whereas 
the remaining multipliers exhibit an exponential increase. This can be better illustrated in 
Fig. 4 which depicts the above said property. It can be observed that, as the order of the 
finite fields (m) increases, the area (transistor count) of multipliers of [32], [39], [37], [38],  
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Table 3. Comparison of total transistor count for the five irreducible polynomials recommended by 
NIST 

Design m = 163 m = 233 m = 283 m = 409 m = 571 
[32] 217442 441302 649202 1350518 2625458 
[39] 2391210 4886010 7208010 15055290 29343690 
[37] 906910 1850930 2729230 5696530 11097934 
[33] 8796 12576 15276 22080 30828 
[38] 1118180 2283400 3367700 7031528 13701716 
[30]a 7830 11190 13590 19638 27414 
[30]b 1008624 2061564 3041664 6354204 12386112 
[28] 170816 342036 500336 1032308 1996208 
[45] 11084 15844 19244 27812 38828 
[40] 1285418 2620318 3861818 8054846 15685370 
[29] 27704 39464 47864 69032 96248 

Proposed 7824 11184 13584 19632 27408 

 

 
Fig. 4. Comparison of area complexity of the proposed sequential multiplier with existing 

multipliers 
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Fig. 5. Comparison of area-delay product of the proposed sequential multiplier with existing 

multipliers 

of area-delay product of the proposed multiplier with the multipliers of [33], [30]a, [45] 
and [29] over a range of m is shown in Fig. 5. Only three multipliers available in the 
literature are considered here for clear graphical depiction. It can be seen that as the order 
of the finite fields (m) increases, the proposed multiplier has a lower area-delay product 
when compared to other multipliers available in the literature, indicating an efficient design 
in terms of both area and delay. 

4.2 ASIC Implementation Results 
The multipliers in [30]a and [29] are the best in area-delay product (ADP) among 

existing multipliers as discussed in Section 4.1. Therefore, the proposed multiplier along 
with the multipliers in [30]a and [29] are modeled in Verilog and synthesized by Cadence 
Encounter RTL Compiler Tool which uses UMC 0.18µm technology for m = 8 and m = 163. 
The finite field multipliers are mainly utilized in symmetric and asymmetric encryption 
techniques such as Advanced Encryption Standard (AES) and Elliptic Curve Cryptography 
(ECC), respectively. Therefore, the multipliers of order m = 8 and m = 163 are considered 
as an example for AES technique and ECC techniques, respectively. The delay, area and 
power consumption (at 100MHz frequency) obtained from the synthesis results are listed in 
Table 4. It can be concluded that the proposed multiplier, when compared to the multiplier 
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in [29], requires 45.95% & 76.46% less power for m = 8 and m =163, respectively and 
requires 48.12% & 76.50% less area for m = 8 and m = 163, respectively. When compared 
to the multiplier in [30]a, the proposed multiplier requires 68.22% & 88.262% less power 
for m = 8 and m =163, respectively, and requires 8.45% & 50.74% less area for m = 8 and m 
= 163, respectively. The proposed multiplier, when compared to the multiplier in [29], 
achieves 47.74% & 45.56% lower ADP and power-delay product (PDP), respectively, for 
m = 8 and 78.08% & 78.04% lower ADP and PDP, respectively, for m = 163. When 
compared to the multiplier in [30]a, the proposed multiplier achieves 13.59% & 70.00% 
lower ADP and PDP, respectively, for m = 8 and 53.67% & 88.96% lower ADP and PDP, 
respectively, m = 163. The proposed multiplier achieves better delay than that of the 
multipliers in [29] and [30]a. 

Table 4. Comparison of ASIC implementation results of the proposed sequential multiplier with 
existing multipliers 

m = 8 

Design Delay 
(ns) 

Power 
(µW) 

Area 
(µm2) 

PDP 
(µW×ns) 

ADP 
(µm2×ns) 

Ho [29] 1.482 14.866 14.418 22.031 21.368 
Fournaris [30]a 1.582 25.282 8.17 39.99 12.925 

Proposed 1.493 8.035 7.48 11.996 11.168 
m = 163 

Design Delay 
(ns) 

Power 
(µW) 

Area 
(µm2) 

PDP 
(µW×ns) 

ADP 
(µm2×ns) 

Ho [29] 1.731 404.839 372.276 700.776 644.410 
Fournaris [30]a 1.717 811.769 177.594 1393.807 304.929 

Proposed 1.615 95.282 87.48 153.880 141.280 

4.3 FPGA Implementation Results 
The Verilog models of the proposed multiplier and the multipliers in [29] and [30]a are 

simulated and synthesized using Xilinx Vivado 2014.2 to verify the functionality. The 
synthesized netlist is implemented on a Xilinx Virtex-7 (XC7VX1140TFLG1930-1) FPGA 
protoype board. The delay, area, power consumption, ADP and PDP (at 66.67MHz 
frequency) obtained from the synthesis results are listed in Table 5. It can be concluded 
from the table that the proposed multiplier, when compared to the multiplier in [29], 
requires 14.12% & 15.98% less power for m = 8 and m = 163, respectively and requires 
51.06% & 80.58% less area for m = 8 and m = 163, respectively. When compared to the 
multiplier in [30]a, the proposed multiplier requires 55.97% & 35.10% less power for m = 
8 and m = 163, respectively, and requires same area for m = 8 & 49.39% less area for m = 
163. The proposed multiplier, when compared to the multiplier in [29], achieves 73.39% & 
53.28% lower ADP and PDP, respectively, for m = 8 and 93.18% & 70.48% lower ADP 
and PDP, respectively, for m = 163. When compared to the multiplier in [30]a, the 
proposed multiplier achieves 53.23% & 79.40% lower ADP and PDP, respectively, for m = 
8 and 77.25% & 70.82% lower ADP and PDP, respectively, m = 163. The proposed 
multiplier achieves better delay than that of the multipliers in [29] and [30]a. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 5, May 2017                                   2695 

Table 5. Comparison of FPGA implementation results of the proposed sequential multiplier 
with existing multipliers 

m = 8 

Design Delay 
(ns) 

Power 
(W) 

Area 
(#LUTs) 

PDP 
(W×ns) 

ADP 
(#LUTs×ns) 

Ho [29] 1.455 0.262 47 0.381 68.385 
Fournaris [30]a 1.691 0.511 23 0.864 38.893 

Proposed 0.791 0.225 23 0.178 18.193 
m = 163 

Design Delay 
(ns) 

Power 
(W) 

Area 
(#LUTs) 

PDP 
(W×ns) 

ADP 
(#LUTs×ns) 

Ho [29] 11.686 0.713 850 8.33 9933.1 
Fournaris [30]a 9.131 0.923 326 8.428 2976.706 

Proposed 4.105 0.599 165 2.459 677.325 

 

4.4 FPGA Implementation of AES with the Proposed Sequential Multiplier 
and Existing Multipliers 

The AES algorithm is implemented on FPGA by incorporating the proposed sequential 
multiplier and the multipliers in [29] and [30]a. The Verilog models of the AES 
implementation of these multipliers are simulated and synthesized using Xilinx Vivado 
2014.2 to verify the functionality. The synthesized netlist is implemented on a Xilinx 
Virtex-7 FPGA protoype board (XC7VX1140TFLG1930-1). The delay, area, power 
consumption, ADP and PDP obtained from the synthesis results are listed in Table 6. It can 
be concluded from the table that the proposed sequential multiplier, when compared to the 
multiplier in [29], requires 42.70% less power and 36.07% less area. When compared to the 
multiplier in [30]a, the proposed sequential multiplier requires 71.32% less power and 
22.22% less area. Moreover, the proposed sequential multiplier, when compared to the 
multiplier in [29], achieves 34.29% & 41.09% lower ADP and PDP, respectively. When 
compared to the multiplier in [30]a, the proposed sequential multiplier achieves 40.13% & 
77.92% lower ADP and PDP, respectively. The proposed sequential multiplier achieves 
delay comparable to the multipliers in [29] and [30]a. 

 
Table 6. Comparison of FPGA implementation results of AES with the proposed multiplier and 

existing multipliers 

Design Delay 
(ns) 

Power 
(W) 

Area 
(#LUTs) 

PDP 
(W×ns) 

ADP 
(#LUTs×ns) 

Ho [29] 58.693 0.459 15793 26.94 926938.549 
Fournaris [30]a 78.371 0.917 12981 71.87 1017333.951 

Proposed 60.327 0.263 10097 15.87 609121.719 
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4.5 FPGA Implementation of Twofish with the Proposed Sequential Multiplier 
and Existing Multipliers 
The Twofish algorithm is implemented on FPGA by incorporating the proposed sequential 
multiplier and the multipliers in [29] and [30]a. The Verilog models of the Twofish 
implementation of these multipliers are simulated and synthesized using Xilinx Vivado 
2014.2 to verify the functionality. The synthesized netlist is implemented on a Xilinx 
Virtex-7 (XC7VX1140TFLG1930-1) FPGA protoype board. The delay, area, power 
consumption, ADP and PDP obtained from the synthesis results of the Twofish 
implementation are listed in Table 7. It can be concluded from the table that the proposed 
sequential multiplier, when compared to the multiplier in [29], requires 37.49% less power 
and 23.51% less area. When compared to the multiplier in [30]a, the proposed sequential 
multiplier requires 73.85% less power and 4.16% less area. Moreover, the proposed 
sequential multiplier, when compared to the multiplier in [29], achieves 17.68% & 32.84% 
lower ADP and PDP, respectively. When compared to the multiplier in [30]a, the proposed 
sequential multiplier achieves 16.94% & 77.34% lower ADP and PDP, respectively. The 
proposed sequential multiplier achieves delay comparable to the multipliers in [29] and 
[30]a. 

Table 7. Comparison of FPGA implementation results of Twofish with the proposed multiplier 
and existing multipliers 

Design Delay 
(ns) 

Power 
(W) 

Area 
(#LUTs) 

PDP 
(W×ns) 

ADP 
(#LUTs×ns) 

Ho [29] 85.359 0.274 19805 23.39 1690534.995 
Fournaris [30]a 106.009 0.654 15805 69.33 1675472.245 

Proposed 91.870 0.171 15148 15.71 1391646.76 

5. Conclusions 
In this paper, a multiplication algorithm with interleaved modular reduction is proposed, 
which performs multiplication of any two arbitrary field elements for any field defining 
irreducible polynomial over GF(2m). A versatile sequential polynomial basis multiplier 
architecture over GF(2m) is realized from the proposed algorithm. The area and delay 
complexities of the proposed multiplier are estimated and performance is compared with 
other sequential polynomial basis multipliers available in the literature. It may be 
concluded from the comparisons of the estimated results that the proposed multiplier 
achieves low area complexity for generic irreducible polynomials of degree m. The 
resultant area-delay product of the proposed multiplier is the lowest when compared to 
other multipliers, indicating an efficient multiplier design in terms of both area and delay. 
In addition, the area cost of the proposed multiplier increases linearly for a range of degrees 
of finite field, m. This is in contrast to the exponential increase in the area cost of majority 
of other multipliers available in the literature, thus indicating that the proposed sequential 
multiplier is more area-efficient for higher order finite fields. The proposed m-bit 
sequential multiplier architecture is scalable and modular and hence suitable for VLSI 
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implementations. From the ASIC and FPGA synthesis results of the multipliers, it can be 
concluded that the proposed sequential multiplier achieves significantly less power-delay 
product and area-delay product when compared to existing multipliers. In addition, the 
AES and Twofish algorithms are implemented in FPGA using the proposed sequential 
multiplier and existing multipliers. The proposed sequential multiplier achieves better 
area-delay product and power-delay product compared to existing multipliers. Moreover, 
the proposed design can be optimized for irreducible trinomials and pentanomials which 
are recommended by NIST. 
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