GALS 시스템에서의 저비용 데이터 전송을 위한 QDI모델 기반 인코더/디코더 회로 설계

Design of QDI Model Based Encoder/Decoder Circuits for Low Delay-Power Product Data Transfers in GALS Systems

  • 오명훈 (한국전자통신연구원 서버플랫폼)
  • 발행 : 2006.01.01

초록

기존의 지연 무관 (Delay-Insensitive(DI)) 데이터 인코딩 방식은 N 비트 데이터 전송에 물리적으로 2N+1 개의 도선이 필요하다. GALS(Globally Asynchronous Locally Synchronous) 시스템과 같은 대규모 칩 설계 시에 많은 도선 수로 인해 발생할 수 있는 전력 소모와 설계 복잡성을 줄이기 위해, 의사지연 무관 (Quasi D디ay-Insensitive(QDI)) 모델에 기반하고, N+1 개의 도선으로 N 비트 데이터를 전송할 수 있는 인코더와 디코더 회로를 설계한다. 이 회로들은 전류모드 다치 논리 회로(Current-Mode Multiple Valued Logic(CMMVL))를 사용하여 설계되었으며, 도선수를 줄임으로써 파생되는 효율성을 검증하기 위해 0.25 um CMOS 공정에서 기존의 DI 인코딩 방식인 dual-rail 방식 및 1-of-4 방식과 delay-power product ($D{\ast}P$) 값 측면에서 비교하였다. HSPICE를 통한 모의실험 결과 4 mm 이상의 도선의 길이에서, dual-rail 방식과는 5 MHz의 data rate 이상에서, 1-of-4 방식과는 18 MHz의 data rate 이상에서 제안된 CMML 방식이 유리하였다. 또한, 긴 도선에 버퍼를 장착한 dual-rail 방식, 1-of-4방식과의 비교에서도 개선된 CMMVL 방식이 10 mm 도선, 32 비트 데이터 전송에서 각각 4 MHz, 25 MHz data rate 이상에서 최대 $57.7\%$$17.9\%$$D{\ast}P$ 값 감소 효과를 나타냈다.

Conventional delay-insensitive (DI) data encodings usually require 2N+1 wires for transferring N-bit. To reduce complexity and power dissipation of wires in designing a large scaled chip, an encoder and a decoder circuits, where N-bit data transfer can be peformed with only N+l wires, are proposed. These circuits are based on a quasi delay-insensitive (QDI) model and designed by using current-mode multiple valued logic (CMMVL). The effectiveness of the proposed data transfer mechanism is validated by comparisons with conventional data transfer mechanisms using dual-rail and 1-of-4 encodings through simulation at the 0.25 um CMOS technology. In general, simulation results with wire lengths of 4 mm or larger show that the CMMVL scheme significantly reduces delay-power product ($D{\ast}P$) values of the dual-rail encoding with data rate of 5 MHz or more and the 1-of-4 encoding with data rate of 18 MHz or more. In addition, simulation results using the buffer-inserted dual-rail and 1-of-4 encodings for high performance with the wire length of 10 mm and 32-bit data demonstrate that the proposed CMMVL scheme reduces the D*P values of the dual-rail encoding with data rate of 4 MHz or more and 1-of-4 encoding with data rate of 25 MHz or more by up to $57.7\%\;and\;17.9\%,$ respectively.

키워드

참고문헌

  1. International Technology Roadmap for Semiconductors 2003 Edition, Semiconductor Industry Association, 2003
  2. K. van Berkel, M. B. Josephs, and S. M. Nowick, 'Scanning the technology: applications of asynchronous circuits,' Proc. of IEEE, Vol. 87, No.2, pp. 223-233, February 1999 https://doi.org/10.1109/5.740016
  3. A. Lines, 'Asynchronous interconnect for synchronous SoC design,' Micro, Vol. 24, No. 1, pp. 32-41, January-February 2004 https://doi.org/10.1109/MM.2004.1268991
  4. S. B. Furber and P. Day, 'Four-phase micropipeline latch control circuits,' IEEE Trans. VISI Systems, Vol. 4, No. 2, pp. 247-253, June 1996 https://doi.org/10.1109/92.502196
  5. J. Sparse and S. B. Furber, Principles of asynchronous circuit design: a system perspective, Kluwer Academic Publisher, 2001
  6. W. J. Bainbridge and S. B. Furber, 'Delay insensitive system-on-chip interconnect using 1-of-4 data encoding,' in Proc. of the Symp, on Asynchronous Circuits and Systems, pp. 118-126, Salt Lake City, US, 2001 https://doi.org/10.1109/ASYNC.2001.914075
  7. K. C. Smith, 'Multiple-valued logic: a tutorial and appreciation,' Computer, Vol. 21, No. 11, pp. 17-27, November 1988 https://doi.org/10.1109/2.48
  8. I. B. Dhaou, M. Ismail, and H. Tenhunen, 'Current mode, low-power, on-chip signaling in deep-submicron CMOS Technology,' IEEE trans. Circuits and Systems I: Fundamental Theory and Applications, Vol. 50, No. 3, pp. 397-400, March 2003 https://doi.org/10.1109/TCSI.2003.808837
  9. A. K. Jain, R. J. Bolton, and M. H. Abd-EI-Barr, 'CMOS multiple-valued logic design-part I: circuit implementation,' IEEE trans. Circuits and Systems I: Fundamental Theory and Applications, Vol. 40, No. 8, pp. 503-514, 1993 https://doi.org/10.1109/81.242320
  10. K. W. Current, 'Current-mode CMOS multiple-valued logic circuits,' IEEE journal of solid-state circuits, Vol. 29, No. 2, pp. 95-107, Feb. 1994 https://doi.org/10.1109/4.272112
  11. T. Hanyu and M. Kameyama, 'A 200 MHz pipelined multiplier using 1.5 V supply multiple-valued MOS current-mod circuits with dual-rail source-coupled logic,' IEEE journal of solid-state circuits, Vol. 30, No. 11, pp. 1239-1245, Nov. 1995 https://doi.org/10.1109/4.475711
  12. S. Hauck, 'Asynchronous design methodologies: An overview,' Proc. of IEEE, Vol. 83, No.1, pp. 69-93, 1995 https://doi.org/10.1109/5.362752
  13. A. S. Sedra and L. C. Smith, Microelectronic Circuits, Saunders College Publishing, 1991
  14. CNU_IDEC cell library data book, IDEC Chungnam National University, 1999
  15. Neil H. E. Weste and K. Eshraghian, Principles of CMOS VLSI design, Addison-Wesley publishing company, 1992
  16. Y.-M. Jiang and K.-T. Cheng, 'Vector generation for power supply noise estimation and verification of deep submicron designs,' IEEE trans. VLSI Systems, Vol. 9, No. 2, pp. 329-340, 2001 https://doi.org/10.1109/92.924055
  17. Advance microcontroller bus architecture specification, Advance RISC Machines Ltd, 1999
  18. CoreConnect, processor local bus architecture specifications, IBM Corp., 2000