• Title/Summary/Keyword: polycrystalline silicon

Search Result 344, Processing Time 0.029 seconds

Low-temperature polycrystalline silicon level shifter using capacitive coupling for low-power operation

  • Chung, Hoon-Ju;Sin, Yong-Won;Cho, Bong-Rae
    • Journal of Information Display
    • /
    • v.11 no.1
    • /
    • pp.21-23
    • /
    • 2010
  • A new level shifter using low-temperature polycrystalline silicon (poly-Si) thin-film transistors (TFTs) for low-power applications is proposed. The proposed level shifter uses a capacitive-coupling effect and can reduce the power consumption owing to its no-short-circuit current. Its power saving over the conventional level shifter is 72% for a 3.3 V input and a 10 V output.

Microstructure Characterization for Nano-thick Ir-inserted Nickel Silicides (나노급 Ir 삽입 니켈실리사이드의 미세구조 분석)

  • Song, Oh-Sung;Yoon, Ki-Jeong;Lee, Tae-Hyun;Kim, Moon-Je
    • Korean Journal of Materials Research
    • /
    • v.17 no.4
    • /
    • pp.207-214
    • /
    • 2007
  • We fabricated thermally-evaporated 10 -Ni/(poly)Si and 10 -Ni/1 -Ir/(poly)Si structures to investigate the microstructure of nickel monosilicide at the elevated temperatures required for annealing. Silicides underwent rapid at the temperatures of 300-1200 for 40 seconds. Silicides suitable for the salicide process formed on top of both the single crystal silicon actives and the polycrystalline silicon gates. A four-point tester was used to investigate the sheet resistances. A transmission electron microscope(TEM) and an Auger depth profile scope were employed for the determination of vertical section structure and thickness. Nickel silicides with iridium on single crystal silicon actives and polycrystalline silicon gates shoed low resistance up to 1000 and 800, respectively, while the conventional nickle monosilicide showed low resistance below 700. Through TEM analysis, we confirmed that a uniform, 20 -thick silicide layer formed on the single-crystal silicon substrate for the Ir-inserted case while a non-uniform, agglomerated layer was observed for the conventional nickel silicide. On the polycrystalline silicon substrate, we confirmed that the conventional nickel silicide showed a unique silicon-silicide mixing at the high silicidation temperature of 1000. Auger depth profile analysis also supports the presence of thismixed microstructure. Our result implies that our newly proposed iridium-added NiSi process may widen the thermal process window for the salicide process and be suitable for nano-thick silicides.

Microstructure Characterization for Nano-thick Nickel Cobalt Composite Silicides from 10 nm-Ni0.5Co0.5 Alloy films (10 nm 두께의 니켈 코발트 합금 박막으로부터 제조된 니켈코발트 복합실리사이드의 미세구조 분석)

  • Song, Oh-Sung;Kim, Sang-Yeob;Kim, Jong-Ryul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.308-317
    • /
    • 2007
  • We fabricated thermally-evaporated 10 nm-Ni/(poly)Si and 10 nm-$Ni_{0.5}Co_{0.5}$/(Poly)Si structures to investigate the microstructure of nickel silicides at the elevated temperatures required lot annealing. Silicides underwent rapid annealing at the temperatures of $600{\sim}1100^{\circ}C$ for 40 seconds. Silicides suitable for the salicide process formed on top of both the single crystal silicon actives and the polycrystalline silicon gates. A four-point tester was used to investigate the sheet resistances. A transmission electron microscope and an Auger depth profilescope were employed for the determination of vortical microstructure and thickness. Nickel silicides with cobalt on single crystal silicon actives and polycrystalline silicon gates showed low resistance up to $1100^{\circ}C$ and $900^{\circ}C$, respectively, while the conventional nickle monosilicide showed low resistance below $700^{\circ}C$. Through TEM analysis, we confirmed that a uniform, $10{\sim}15 nm$-thick silicide layer formed on the single-crystal silicon substrate for the Co-alloyed case while a non-uniform, agglomerated layer was observed for the conventional nickel silicide. On the polycrystalline silicon substrate, we confirmed that the conventional nickel silicide showed a unique silicon-silicide mixing at the high silicidation temperature of $1000^{\circ}C$. Auger depth profile analysis also supports the presence of this mixed microstructure. Our result implies that our newly proposed NiCo-alloy composite silicide process may widen the thermal process window for the salicide process and be suitable for nano-thick silicides.

Edge Isolation Effects on Silicon Solar Cells using a Laser Scribing Process (레이저 스크라이빙 공정을 이용한 실리콘 태양전지의 측면분리 효과)

  • Joo, Jae-Hong;Jung, Soon-Won;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.851-856
    • /
    • 2017
  • Research on the edge isolation process of typical polycrystalline silicon solar cells was carried out using laser scribing equipment. The voltage-current characteristics of the solar cell before and after laser scribing were analyzed using a solar simulator. Current density and efficiency increased as the fill factor of the solar cell remained constant after the laser scribing process. The efficiency of the solar cell can be increased in a short time by the edge isolation process performed via a laser scribing process. The polycrystalline silicon solar cell was made into a series electrode, and the efficiency of the solar cell increased because the width of the solar cell was narrowed and the active region was widened by the laser scribing process.

Efficiency Improvement of Polycrystalline Silicon Solar Cells using a Grain boundary treatment (결정입계 처리에 따른 다결정 실리콘 태양전지의 효율 향상)

  • 김상수;김재문;임동건;김광호;원충연;이준신
    • Electrical & Electronic Materials
    • /
    • v.10 no.10
    • /
    • pp.1034-1040
    • /
    • 1997
  • A solar cell conversion effiency was degraded by grain boundary effect in polycrystalline silicon. Grain boundaries acted as potential barriers as well as recombination centers for the photo-generated carriers. To reduce these effects of the grain boundaries we investigated various influencing factors such as emitter thickness thermal treatment preferential chemical etching of grain boundaries grid design contact metal and top metallization along boundaries. Pretreatment in $N_2$atmosphere and gettering by POCl$_3$and Al were performed to obtain multicrystalline silicon of the reduced defect density. Structural electrical and optical properties of slar cells were characterized before and after each fabrication process. Improved conversion efficiencies of solar cell were obtained by a combination of pretreatment above 90$0^{\circ}C$ emitter layer of 0.43${\mu}{\textrm}{m}$ Al diffusion in to grain boundaries on rear side fine grid finger top Yb metal and buried contact metallization along grain boundaries.

  • PDF

Study on Piezoresistive Humidity Sensor using Polycrystalline Silicon with Membrane (박막구조를 가진 폴리실리콘 압저항형 습도센서의 연구)

  • Park, Sung-Il;Park, Se-Kwang
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1422-1424
    • /
    • 1994
  • This paper deals with piezoresistive humidity sensor using polycrystalline silicon (Poly-Si ) with membrane in sensors of semiconductor. Poly-Si piezoresistors which have no temperature dependancy are deposited on silicon wafer, membrane is formed with micromachining technology, then polyimide is formed as a hygroscopic layer. Whereas the principle of conventional humidify sensors are based on the change in electrical properties of the material, the humidity induced volume change of a polyimide layer leads to a deformation of a silicon membrane in this case. This deformation is transformed into an output voltage by Poly-Si piezoresistive. Wheatstone bridge. Fabricated piezoresistive humidity sensors showed good linearity, response time, and long term stability.

  • PDF

Manipulation of Microstructures of in-situ Phosphorus-Doped Poly Silicon Films deposited on Silicon Substrate Using Two Step Growth of Reduced Pressure Chemical Vapor Deposition (감압화학증착의 이단계 성장으로 실리콘 기판 위에 증착한 in-situ 인 도핑 다결정 실리콘 박막의 미세구조 조절)

  • 김홍승;심규환;이승윤;이정용;강진영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.2
    • /
    • pp.95-100
    • /
    • 2000
  • For the well-controlled growing in-situ heavily phosphorus doped polycrystalline Si films directly on Si wafer by reduced pressure chemical vapor deposition, a study is made of the two step growth. When in-situ heavily phosphorus doped Si films were deposited directly on Si (100) wafer, crystal structure in the film is not unique, that is, the single crystal to polycrystalline phase transition occurs at a certain thickness. However, the well-controlled polycrtstalline Si films deposited by two step growth grew directly on Si wafers. Moreover, the two step growth, which employs crystallization of grew directly on Si wafers. Moreover, the two step growth which employs crystallization of amorphous silicon layer grown at low temperature, reveals crucial advantages in manipulating polycrystal structures of in-situ phosphorous doped silicon.

  • PDF

Transient trap density in thin silicon oxides

  • Kang, C.S.;Kim, D.J.;Byun, M.G.;Kim, Y.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.6
    • /
    • pp.412-417
    • /
    • 2000
  • High electric field stressed trap distributions were investigated in the thin silicon oxide of polycrystalline silicon gate metal oxide semiconductor capacitors. The transient currents associated with the off time of stressed voltage were used to measure the density and distribution of high voltage stress induced traps. The transient currents were due to the discharging of traps generated by high stress voltage in the silicon oxides. The trap distributions were relatively uniform near both cathode and anode interface in polycrystalline silicon gate metal oxide semiconductor devices. The stress generated trap distributions were relatively uniform the order of $10^{11}$~$10^{12}$ [states/eV/$\textrm{cm}^2$] after a stress. The trap densities at the oxide silicon interface after high stress voltages were in the $10^{10}$~$10^{13}$ [states/eV/$\textrm{cm}^2$]. It was appeared that the transient current that flowed when the stress voltages were applied to the oxide was caused by carriers tunneling through the silicon oxide by the high voltage stress generated traps.

  • PDF

Simulation by heat transfer of ADS process for large sized polycrystalline silicon ingot growth (대형 다결정 실리콘 잉곳 성장을 위한 ADS 법의 열유동에 관한 공정모사)

  • Shur, J.W.;Hwang, J.H.;Kim, Y.J.;Moon, S.J.;So, W.W.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.45-49
    • /
    • 2008
  • The development of manufacturing process of silicon (Si) ingots is one of the important issues to the growth of the photovoltaic industry. Polycrystalline Si wafers shares more than 60% of the photovoltaic market due to its cost advantage compared to mono crystalline silicon wafers. Several solidification processes have been developed by industry including casting, heat exchange method (HEM) and electromagnetic casting. In this paper, the advanced directional solidification (ADS) method is used to growth of large sized polycrystalline Si ingot. This method has the advantages of the small heat loss, short cycle time and efficient directional solidification. The numerical simulation of the process is applied using a fluid dynamics model to simulate the temperature distribution. The results of simulations are confirmed efficient directional solidification to the growth of large sized polycrystalline Si ingot above 240 kg.

Application of rapid thermal annealing process to the aluminum induced crystallization of amorphous silicon thin film (비정질 실리콘의 부분적 알루미늄 유도 결정화 공정에서의 급속 열처리 적용 가능성)

  • Hwang, Ji-Hyun;Yang, Su-Won;Kim, Young-Kwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.50-53
    • /
    • 2019
  • In this study, polycrystalline silicon thin film useful for the solar cells was fabricated by AIC(Aluminum Induced Crystallization) process. A diffusing barrier for this process is prepared with $Al_2O_3$. For the maximization of the grain size of the polycrystalline silicon, a selective blasting of the $Al_2O_3$ diffusing barrier was conducted before annealing treatment. The heat treatment for the activation of the amorphous-Si (a-Si) layer was carried out with Rapid Thermal Annealing (RTA) process. Crystallization of the a-Si layer was analyzed with XRD. It was confirmed that a-Si was crystallized at $500^{\circ}C$ and the silicon crystal is observed to be formed and the grain size of the polycrystalline silicon was observed to be $15.9{\mu}m$.