• Title/Summary/Keyword: pole-zero analysis

Search Result 48, Processing Time 0.027 seconds

An Improved Soft-Switching Inverter with An Unidirectional Auxiliary Switch (단방향 보조 스위치를 갖는 개선된 소프트 스위칭 인버터)

  • Sohn, Se-Jin;Lee, Kui-Jun;Kim, Rae-Young;Hyun, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.376-377
    • /
    • 2010
  • In this paper, novel unidirectional auxiliary resonant commutated pole is proposed to improve the performance of zero-voltage soft-switching inverter. The proposed circuit keeps the advantages of the original soft-switching inverter, while providing more effective resetting capability in magnetizing current. Based on the advanced reset mechanism, auxiliary switches operate under a complete zero-current condition. The operating principle and steady-state analysis are presented theoretically, according to its operating modes. Accordingly, it proves the fact that the proposed unidirectional auxiliary resonant commutated pole breaks an unwanted magnetizing current loop effectively. The performance of the proposed circuit is verified by several simulation results.

  • PDF

Analysis and Design of the State Feedback Current Controller's Gain (상태 궤환 전류 제어기의 이득 분석 및 설계)

  • Lee, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.982-983
    • /
    • 2006
  • This paper deals with an analysis and design of the state feedback current controller's gain in the three-phase current control systems. First, this paper derives the transfer function of the closed loop current control system and also compares the state feedback current controller with the conventional proportional integral controller. A new pole placement method by using the pole/zero cancellation method is proposed to give a simple and concrete concept with respect to the pole selection. Experimental results on the permanent magnet synchronous motor show that the proposed method is very useful to design the gain of the state feedback current controller.

  • PDF

Design of A 3V CMOS Fully-Balanced Complementary Current-Mode Integrator (3V CMOS Fully-Balanced 상보형 전류모드 적분기 설계)

  • Lee, Geun-Ho;Bang, Jun-Ho;Cho, Seong-Ik;Kim, Dong-Yong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.106-113
    • /
    • 1997
  • A 3V CMOS continuous-time fully-balanced integrator for low-voltage analog-digital mixed-mode signal processing is designed in this paper. The basic architecture of the designed fully-balanced integrator is complementary circuit which is composed of NMOS and PMOS transistor. And this complementary circuit can extend transconductance of an integrator. So. the unity gain frequency, pole and zero of integrator are increased by the extended transconductance. The SPICE simulation and small signal analysis results show that the UGF, pole and zero of the integrator is increased larger than those of the compared integrtors. The three-pole active low-pass filter is designed as a application circuit of the fully-balanced integrator, using 0.83V CMOS processing parameter.

  • PDF

Modeling and Characteristic Analysis of HEV Li-ion Battery Using Recursive Least Square Estimation (최소 자승법을 이용한 하이브리드용 리튬이온 배터리 모델링 및 특성분석)

  • Kim, Ho-Gi;Heo, Sang-Jin;Kang, Gu-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.130-136
    • /
    • 2009
  • A lumped parameter model of Li-ion battery in hybrid electric vehicle(HEV) is constructed and system parameters are identified by using recursive least square estimation for different C-rates, SOCs and temperatures. The system characteristics of pole and zero in frequency domain are analyzed with the parameters obtained from different conditions. The parameterized model of Li-ion battery indicates highly dependant of temperatures. The system pole and internal resistance changes 6.6 and 18 times at $-20^{\circ}C$, comparing with those at $25^{\circ}C$, respectively. These results will be utilized on constructing model-based state observer or an on-line identification and an adaptation of the model parameters in battery management systems for hybrid electric vehicle applications.

Theoretical Analysis of Frequency Dependent Input Resistance in RF MOSFETs (RF MOSFET의 주파수 종속 입력 저항에 대한 이론적 분석)

  • Ahn, Jahyun;Lee, Seonghearn
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.11-16
    • /
    • 2017
  • The frequency dependent input resistance observed in RF MOSFETs is analyzed in detail by deriving pole and zero frequency equations from a simplified input equivalent circuit. Using this theoretical analysis, we find that the reduction effect of the input resistance in the low frequency region arises from the channel resistance between source and pinch-off region in the saturation region. This channel resistance effect on the low frequency reduction of the input resistance is physically validated by performing small-signal equivalent circuit modeling with varying the channel resistance.

Design of A 3V CMOS Lowpass Filter Using the Improved Continuous-Time Fully-Differential Current-Mode Integrator (개선된 연속시간 Fully-Differential 전류모드 적분기를 이용한 3V CMOS 저역필터 설계)

  • 최규훈;방준호;조성익
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.4
    • /
    • pp.685-695
    • /
    • 1997
  • In this paper, a new CMOS continuous-time fully-differential current-mode integrator is proposed as a basic building block of the low-voltage high frequency current-mode active filter. The proposed integrator is composed of the CMOS complementary circuit which can extend transconductance of an integrator. Therefore, the unity gain frequency which is determined by a small-signal transconductance and a MOSFET gate capacitance can be expanded by the complementary transconductance of the proposed integrator. And also the magnitude of pole and zero are increased. The unity gain frequency of the proposed integrator is increased about two times larger than that of the conventional continuous-time fully-differential integrator with NMOS-gm. These results are verified by the small signal analysis and the SPICE simulation. As an application circuit of the proposed fully-differential current-mode integrator, the three-pole Chebyshev lowpass filter is designed using 0.8.$\mu$m CMOS processing parameters. SPICE simulation predicts a 3-dB bandwidth of 148MHz and power dissipation of 4.3mW/pole for the three-pole filter with 3-V power supply.

  • PDF

Safely Improving Method to Zero-Harmonics Current with 4-Pole Low Voltage Circuit Breaker Equipped N-phase Trip Device (4극 저압차단기 N상 Trip장치를 사용한 영상고조파 안전성 개선방안)

  • Ki, Che-Ouk;Kim, Ju-Chul;Choi, Chang-Kyu
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.458-461
    • /
    • 2009
  • In 3-phase 4 wire system, appearance of the $3^{rd}$ harmonic current by increasing non-liner load is the one of causes overheating neutral wire of power line, and apparatus. So it is necessary to protect power-factor decreasing by the $3^{rd}$ harmonic, and electric power apparatus, and line safely, in this study, power system accidents caused by the $3^{rd}$ harmonic were investigated, then harmonic components analysis and unbalanced load analysis got accomplished. As result, we proposed the method to protect the power line and apparatus from over-current of neutral line by using the most economic 4-pole low voltage circuit breaker.

  • PDF

Dynamic Analysis and Control-Loop Design of ZVS-FB PWM DC/DC Converter for High-Power Applications (대용량 ZVS-FB PWM DC/DC 변환기의 제어 루프 설계와 동특성 해석)

  • Yoon, Kil-Moon;Baek, Ju-Won;Cha, Young-Kil;Kim, Heung-Geun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2023-2027
    • /
    • 1997
  • This paper presents the dynamic analysis and control-loop design of a zero-voltage-switched full bridge (ZVS-FB) PWM dc/dc converter. Based on the small-signal analysis results, the control-loop is designed using a simple two-pole one-zero compensation circuit. Design results are verified by both computer simulations and experimental data obtained from a 2kW prototype converter.

  • PDF

Understanding of dynamic system properties in the frequency domain using bond graphs (본드선도를 이용한 동적시스템의 주파수역 특성이해)

  • Park, Jeon-Soo;Kim, Jong-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.801-810
    • /
    • 1998
  • Modeling and analysis of dynamic systems generally demand their resutls to be interpreted each other with a physical sense. It sometimes requires that there should exist a unified tool in the treatment of dynamic systems which can be applied to both their modeling and analysis equally. This paper shows how models just after the progress of modeling via bond graph standards are converted to ones which are appropriate for analyzing a dynamic system in the frequency domain. Four bond graph prototypes are introduced to obtain frequency properties of dynamic systems such as zero stability, relative order, zero and pole dynamics, etc. directly from bond graphs, and the method are proposed which reduces nearly all models of bond graph standards to one of the prototypes without any change of physical similarity. This procedure as a tool for the structural reduction of bond graphs and finding frequency properties of a dynamic system is further investigated to survey its effectiveness through an example.

The Stablity and Transient Response in the Buck-Boost DC-DC Converter (승강엽형 DC-DC 콘버어터의 안정도 및 과도 응답)

  • 김희준;김순창
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.5
    • /
    • pp.421-430
    • /
    • 1991
  • This paper investigated the errect of the right-half-plane zero on stability in the buck-boost DC-DC converter which is one type of the switching regulator and the stability region for the variation of the output current is obtained by evaluating the feedback gain. And it is clarified that the damping ratio decreases gradually by increase of the feedback loop gain and the regulation system of the converter becomes unstable, and from the transient response analysis we obtainedthe stability region about this converter. From above result it is known that the stability decreases by the existence of the right-half-plane zero. For the improvement of stability, we carried out one pole compensation in feedback circuit and obtained the avaliable stability region in relation to the gain bandwidth product from the stability and transient response analysis. These results were established experiment.

  • PDF