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I. Introduction

S-parameters in two-port measurement system are 

widely used to develop a MOSFET equivalent circuit 

model and design RF integrated circuits (ICs), but it 

is very hard to analyze the frequency response of 

input resistance RIN converted from S11-parameter 

with the load resistance of 50Ω connected in output 

port[1]. 

As Lg is scaled down to deep sub-micron, RIN is 

increased by another component due to the output 

resistance connected to the drain in the saturation 

region[1～4]. In previous study[1], the gate finger 

number Nf dependent characteristics of low-frequency 

RIN measured from S11-parameter of multi-finger 

sub-micron MOSFETs have been analyzed. Recently, 

it has been reported that RIN of a standard MOSFET 

is largely reduced with increasing frequency at low 

frequencies[1～2]. Since this frequency dependence of 

RIN has a decisive impact on the RF input characteristics 

of MOSFETs, its accurate modeling is very important 

for an input matching circuit design in RF ICs. 

However, this low frequency reduction phenomenon 

of RIN has not been analyzed and its physical origin 

has not been investigated yet. 

Therefore, in this paper, we have derived pole and 

zero frequency equations of RIN in 0.18μm standard 

multi-finger N-MOSFETs using a physical equivalent
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circuit model. Using these equations, an original 

model parameter for reducing RIN in the low 

frequency region is clearly identified in detail.

Ⅱ. Measurement

N-MOSFETs with a multi-finger layout (the gate 

length Lg=0.18μm, the unit gate finger width 

Wu=10µm, the gate finger number Nf=16, 64) fabricated 

by a standard CMOS process were used in this work. 

S-parameters of these devices were measured using 

on-wafer RF probe up to 30GHz. We carried out a 

de-embedding process for removing RF probe pad 

and metal interconnection parasitic components from 

measured S-parameters[5～6].

Using measured S11-parameter, RIN is obtained by 

the real part of input impedance[1～2]: 

  ⋅






  


 (1)

where ZO is the characteristic impedance of RO=50Ω.
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그림 1. Nf=16, 64 일 때 측정된 RIN의 주파수 응답.

Fig. 1. The frequency response of measured RIN for Nf=16 

and 64.

Fig. 1 shows the frequency response of measured 

RIN with a different Nf up to 30GHz using (1)
[2]. In 

Fig. 1, RIN is largely reduced by the pole frequency 

fpole and flatted by the zero frequency fzero at higher 

frequencies. The RIN consists of the gate resistance 

Rg and the input resistance R'IN seen behind Rg. 

Since Rg is independent of frequency, the frequency 

dependence in Fig. 1 is due to R'IN. The 

high-frequency values of RIN at Nf=64 are lower than 

those of Nf=16. This is because the frequency 

independent Rg included in RIN is inversely proportional 

to Nf in a multi-finger gate layout. This reduction 

effect of RIN versus frequency is analyzed in the next 

chapter by deriving the theoretical formula of fpole and 

fzero.

Ⅲ. Analysis

1. Input Resistance Equation

In order to obtain fpole and fzero equations of RIN, we 

use a small-signal MOSFET equivalent circuit[7～9] 

with Ro=50Ω connected in output port for a 

S11-parameter measurement setup in Fig. 2.

그림 2. S11-parameter의 측정 setup에서 MOSFET 소신호 

등가회로.

Fig. 2. A small-signal MOSFET equivalent circuit in a 

S11-parameter measurement setup.

In this model, Cgs is the gate-source capacitance, 

Cgd is the gate-drain capacitance, gm is the 

transconductance, rds is the differential drain-source 

resistance due to channel length modulation in the 

saturation region, Cds is the depletion capacitance 

between drain and channel end in the saturation 

region, rch is the channel resistance between source 

and channel end in the saturation region[7], Rg is the 

gate resistance, Rd is the drain resistance, Rs is the 

source resistance, Cjd is the drain-bulk junction 

capacitance, Rbk is the bulk resistance, and Cbk is the 

bulk capacitance.

However, it is very difficult to derive fpole and fzero 

due to the complexity of Fig. 2. In order to simplify 

Fig. 2, the influence of junction and bulk parameters 
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(Cjd, Cbk, Rbk) on fpole and fzero is analyzed by using 

the following direct extraction method:

In the high-frequency(HF) region where the 

frequency dependence disappears, Rg, Rd, and Rs are 

extracted at Vds=Vgs=0V using y-intercepts of 

Re(Z11-Z12), Re(Z22-Z12) and Re(Z12) versus ω-2, 

respectively[10]. Cjd, Rbk and Cbk are extracted using 

the following direct extraction method using Y-parameter 

equations[7, 11].

In order to check the influence of junction and bulk 

parameters, de-embedded RIN is obtained by 

subtracting extracted values of Rd, Cjd, Rbk and Cbk 

from measured S-parameters[12]. Fig. 3 shows a 

comparison between de-embedded and measured RIN 

vs. frequency. The de-embedded RIN decreases in all 

frequency range, but these parameters have a very 

weak influence on fpole and fzero in Fig. 3. Thus, the 

physical reason for the low frequency reduction of 

RIN in standard MOSFETs is not due to Rbk, unlike 

previous results in non-standard MOSFET[3～4].
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그림 3. 디임베딩된 RIN과 측정된 RIN의 주파수 응답. 

Fig. 3. Frequency response of measured and de-embedded 

RIN.

Thus, in order to reveal the physical origin of the 

reduction effect of RIN, the frequency dependence of 

RIN is analyzed using the simplified input equivalent 

circuit neglecting Cjd, Rbk and Cbk in Fig. 4 where the 

negative feedback resistance Rs is absorbed in the 

following formulas of C'gs, C'ds, g'm and r'ds by 

combining with Cgs, Cds, gm and rds
[3～4]:

 ′     (2)

 ′     (3)

 ′     (4)

 ′      (5)

그림 4. Cjd, Rbk, Cbk가 무시되어 단순화된 입력 등가회로

Fig. 4. A simplified input equivalent circuit with neglecting 

Cjd, Rbk and Cbk.

In Fig. 4, Z'IN is the input impedance seen in front 

of C'gs and Z''IN is one seen behind C'gs. The 

effective load impedance ZL in a dashed box is a 

circuit block with r'ds, C'ds, rch and Ro+Rd. From Fig. 

4, Z''IN is derived by:

 ′′  ′  



 

(6)

where ZL is derived by:

  ′    
   ′

(7)

where Rp is parallel block of r'ds and Rd+Ro.

From Fig. 4, R'IN is expressed by the real part of 

the parallel impedance Z'IN of Z''IN and C'gs.

 ′   





 ′


  ′′ 
 ′


 ′′  



 (8)

Substituting (6) and (7) into (8), the following 

equation is derived:

 ′  
 

(9)

where
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    ′  ′′ 
  

  ′  ′   
   ′ ′ 
  

 ′  ′′  ′ ′
  ′    ′    ′  
  ′′  ′
  ′   
   ′ ′ 

2. Pole and Zero Frequency

In order to derive fpole, the denominator of (9) is 

divided by {C'gs+Cgd(1+Rpg'm)}
2 and then expressed 

by the following equation: 

      (10)

where

  
 ′  ′′  ′ ′

  ′    ′    ′   
  ′′  ′
  ′     ′  ′ 
   ′ ′  ′  ′ 

The equation of (10) can be rewritten by: 

       (11)

Solving a=p+q and b=pq obtained by (10) and (11), 

p is obtained by:

 
  (12)

To calculate a and b in (12), intrinsic model 

parameters (Cgs, Cgd, Cds, gm, rds and rch) in Fig. 2 is 

extracted using intrinsic Yi-parameter equations[7, 11] 

obtained by sequentially subtracting extracted values 

of Rd, Cjd, Rbk, Cbk, Rg, and Rs from measured 

S-parameters.

In order to eliminate the possible errors associated 

with the direct method, a small-signal equivalent 

circuit of Fig. 2 is optimized to fit the measured 

S-parameters as close as possible while parameters 

obtained from the direct method are used as initial 

values with narrow bounds. C'gs, C'ds, g'm and r'ds in 

Fig. 4 are determined using (2)-(5). Table 1 shows 

extracted model parameters, a and b of Nf=16 and 64. 

Due to a >> b in Table 1, p ≈ a and p >> q. 

Thus, (11) is approximated by the following equation:

≈   (13)

Therefore, the dominant pole frequency fpole is 

obtained by: 

  
 




 ′  ′  (14)

where

  
 ′  ′′  ′ ′

 ′ 
   ′    ′      ′′


 ′   ′    
When a conventional equivalent circuit[2～4] without 

rch is used, fpole using (14) at rch = 0 is calculated to 

be 43.03GHz at Nf=16 and 14.64GHz at Nf=64 which 

are much higher than measured ones in Fig. 1. 

However, using extracted rch in Table 1 to calculate 

(14), similar fpole values to measured ones are obtained 

to be 3.78GHz at Nf=16 and 2.42GHz at Nf=64. These 

results clearly indicate that the low fpole is due to rch 

in MOSFET. 

표 1. MOSFET의 추출된 모델 파라미터, a와 b

Table1. Extracted model parameters, a and b of MOSFETs.

Parameter Nf=16 Nf=64
Rg 3Ω 0.7Ω
Rd 3.4Ω 0.87Ω
r'ds 414Ω 97Ω
rch 390Ω 65Ω
g'm 0.0787S 0.31S
C'gs 0.205pF 0.92pF
Cgd 0.063pF 0.250pF
C'ds 0.1pF 0.85pF
a 1.77 × 1021 4.3 × 1021

b 2.2 × 1045 1.27 × 1044

From the numerator of (9), fzero is derived by:

  
   ′  ′   

 ′   ′ 

(15)
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When a conventional equivalent circuit[3～4] without 

rch is used, fzero using (15) doesn’t exist. This completely 

disagrees with measured ones in Fig. 1. However, 

fzero using extracted rch is calculated to be 6.04GHz at 

Nf=16 and 5.7GHz at Nf=64 which are similar to 

measured ones in Fig. 1.

Therefore, the large reduction phenomenon of RIN 

in low frequency region under 5GHz in Fig. 1 

originates from rch in denominators of (14) and (15).

Ⅳ. Verifications

In order to exactly prove the phenomenon of 

reducing RIN due to rch, the frequency response of the 

RIN is simulated with varying rch using Fig. 2. The 

modeled RIN data at rch = 390Ω at Nf = 16 and rch = 65

Ω at Nf=64 agree well with measured ones up to 

15GHz, verifying the accuracy of extracted model 

parameters. However, the modeling accuracy decreases 

in higher frequency range because of the frequency-

dependent rch due to the vertically distributed RC effect 

in the saturation region[9].

In Fig. 5, when rch increases, RIN is largely reduced 

and then flatted at lower frequencies because of 

reduction of the dominant fpole and fzero
[12]. Also, the 

decreasing rate of RIN increases when rch increases. 

This is a same tendency predicted in (14) and (15).

In this study, it is physically discovered that the 

reduction effect of RIN at low frequency range in 

standard MOSFET is generated by low fpole and fzero 

due to channel resistance rch between source and 

pinch-off depletion region in the saturation region. 

Thus, it is very important that rch should be 

accurately extracted to model RF MOSFET equivalent 

circuit for RF IC design.

V. Conclusion

The low frequency reduction effect of RIN in RF 

MOSFETs using a standard CMOS process is 

analyzed in detail. In order to reveal the physical 

origin of this phenomenon, dominant fpole and fzero 

equations are derived from a simplified input 

equivalent circuit for the measurement of S11-parameter.

Frequency (GHz)

0 5 10 15 20 25 30

R
IN

 (


8

10

12

14

16

18
Modeled (rch = 0 

Modeled (rch = 90

Modeled (rch = 190 

Modeled (rch = 290)

Modeled (rch = 390 
Measured

Vgs= 0.9V ,   Vds= 1.5V
Lg = 0.18m , Wu= 10m , Nf = 16

     (a)

Frequency (GHz)

0 5 10 15 20 25 30

R
IN

 (


2

4

6

8

10
Modeled (rch = 0 
Modeled (rch = 25
Modeled (rch = 45 
Modeled (rch = 65)
Modeled (rch = 85 
Measured

Vgs= 0.9V ,   Vds= 1.5V
Lg = 0.18m , Wu= 10m , Nf = 64

     (b) 

그림 5. 여러 가지 rch에 따라 모델된 RIN과 측정된 RIN의 

주파수 응답. 

(a) Nf=16

(b) Nf=64

Fig. 5. The frequency response of modeled and measured 

RIN with various rch.

(a) Nf=16

(b) Nf=64

Based on these equations, it is physically found that 

the large reduction of RIN at the low frequency range 

is generated from rch in the saturation region. The 

effect of rch on the low frequency dependence of RIN 

is also verified by simulating an input equivalent 

circuit model with varying rch. Thus, a MOSFET 

equivalent circuit with rch should be accurately 

modeled to predict the frequency dependence of RIN in 

standard RF MOSFETs.
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