• Title/Summary/Keyword: parabolic problem

Search Result 131, Processing Time 0.024 seconds

SOLVABILITY FOR THE PARABOLIC PROBLEM WITH JUMPING NONLINEARITY CROSSING NO EIGENVALUES

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.16 no.4
    • /
    • pp.545-551
    • /
    • 2008
  • We investigate the multiple solutions for a parabolic boundary value problem with jumping nonlinearity crossing no eigenvalues. We show the existence of the unique solution of the parabolic problem with Dirichlet boundary condition and periodic condition when jumping nonlinearity does not cross eigenvalues of the Laplace operator $-{\Delta}$. We prove this result by investigating the Lipschitz constant of the inverse compact operator of $D_t-{\Delta}$ and applying the contraction mapping principle.

  • PDF

MULTIPLE SOLUTIONS FOR THE NONLINEAR PARABOLIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.251-259
    • /
    • 2009
  • We investigate the multiple solutions for the nonlinear parabolic boundary value problem with jumping nonlinearity crossing two eigenvalues. We show the existence of at least four nontrivial periodic solutions for the parabolic boundary value problem. We restrict ourselves to the real Hilbert space and obtain this result by the geometry of the mapping.

  • PDF

NONHOMOGENEOUS DIRICHLET PROBLEM FOR ANISOTROPIC DEGENERATE PARABOLIC-HYPERBOLIC EQUATIONS WITH SPATIALLY DEPENDENT SECOND ORDER OPERATOR

  • Wang, Qin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1597-1612
    • /
    • 2016
  • There are fruitful results on degenerate parabolic-hyperbolic equations recently following the idea of $Kru{\check{z}}kov^{\prime}s$ doubling variables device. This paper is devoted to the well-posedness of nonhomogeneous boundary problem for degenerate parabolic-hyperbolic equations with spatially dependent second order operator, which has not caused much attention. The novelty is that we use the boundary flux triple instead of boundary layer to treat this problem.

TOPOLOGICAL APPROACH FOR THE MULTIPLE SOLUTIONS OF THE NONLINEAR PARABOLIC PROBLEM WITH VARIABLE COEFFICIENT JUMPING NONLINEARITY

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.19 no.1
    • /
    • pp.101-109
    • /
    • 2011
  • We get a theorem which shows that there exist at least two or three nontrivial weak solutions for the nonlinear parabolic boundary value problem with the variable coefficient jumping nonlinearity. We prove this theorem by restricting ourselves to the real Hilbert space. We obtain this result by approaching the topological method. We use the Leray-Schauder degree theory on the real Hilbert space.

LERAY-SCHAUDER DEGREE THEORY APPLIED TO THE PERTURBED PARABOLIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.2
    • /
    • pp.219-231
    • /
    • 2009
  • We show the existence of at least four solutions for the perturbed parabolic equation with Dirichlet boundary condition and periodic condition when the nonlinear part cross two eigenvalues of the eigenvalue problem of the Laplace operator with boundary condition. We obtain this result by using the Leray-Schauder degree theory, the finite dimensional reduction method and the geometry of the mapping. The main point is that we restrict ourselves to the real Hilbert space instead of the complex space.

  • PDF

Existence and Behavior Results for a Nonlocal Nonlinear Parabolic Equation with Variable Exponent

  • Sert, Ugur;Ozturk, Eylem
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.145-161
    • /
    • 2020
  • In this article, we study the solvability of the Cauchy-Dirichlet problem for a class of nonlinear parabolic equations with nonstandard growth and nonlocal terms. We prove the existence of weak solutions of the considered problem under more general conditions. In addition, we investigate the behavior of the solution when the problem is homogeneous.

A GLOBALITY OF A HOPF BIFURCATION IN A FREE BOUNDARY PROBLEM

  • Ham, Yoon-Mee
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.395-405
    • /
    • 1997
  • A globality of the Hopf bifurcation in a free boundary problem for a parabolic partial differential equation is investigated in this paper. We shall examine the global behavior of the Hopf critical eigenvalues and and apply the center-index theory to show the globality.

  • PDF

SIMPLIFIED TIKHONOV REGULARIZATION FOR TWO KINDS OF PARABOLIC EQUATIONS

  • Jing, Li;Fang, Wang
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.311-327
    • /
    • 2011
  • This paper is devoted to simplified Tikhonov regularization for two kinds of parabolic equations, i.e., a sideways parabolic equation, and a two-dimensional inverse heat conduction problem. The measured data are assumed to be known approximately. We concentrate on the convergence rates of the simplified Tikhonov approximation of u(x, t) and its derivative $u_x$(x, t) of sideways parabolic equations at 0 $\leq$ x < 1, and that of two-dimensional inverse heat conduction problem at 0 < x $\leq$ 1, respectively.

LEAST-SQUARES SPECTRAL COLLOCATION PARALLEL METHODS FOR PARABOLIC PROBLEMS

  • SEO, JEONG-KWEON;SHIN, BYEONG-CHUN
    • Honam Mathematical Journal
    • /
    • v.37 no.3
    • /
    • pp.299-315
    • /
    • 2015
  • In this paper, we study the first-order system least-squares (FOSLS) spectral method for parabolic partial differential equations. There were lots of least-squares approaches to solve elliptic partial differential equations using finite element approximation. Also, some approaches using spectral methods have been studied in recent. In order to solve the parabolic partial differential equations in parallel, we consider a parallel numerical method based on a hybrid method of the frequency-domain method and first-order system least-squares method. First, we transform the parabolic problem in the space-time domain to the elliptic problems in the space-frequency domain. Second, we solve each elliptic problem in parallel for some frequencies using the first-order system least-squares method. And then we take the discrete inverse Fourier transforms in order to obtain the approximate solution in the space-time domain. We will introduce such a hybrid method and then present a numerical experiment.