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MULTIPLE SOLUTIONS FOR THE NONLINEAR
PARABOLIC PROBLEM

Tacksun Jung* and Q-Heung Choi**

Abstract. We investigate the multiple solutions for the nonlinear
parabolic boundary value problem with jumping nonlinearity cross-
ing two eigenvalues. We show the existence of at least four nontriv-
ial periodic solutions for the parabolic boundary value problem. We
restrict ourselves to the real Hilbert space and obtain this result by
the geometry of the mapping.

1. Introduction

Let Ω be a bounded, connected open subset of Rn with smooth bound-
ary ∂Ω and let ∆ be the Laplace operator. In this paper we consider the
multiplicity of the solutions of the following parabolic boundary value
problem

Dtu = ∆u + bu+ − au− − sφ1 in Ω×R, (1.1)

u(x, t) = 0, x ∈ ∂Ω, t ∈ R,

u(x, t) = u(x, t + 2π), in Ω×R.

The physical model for this kind of the jumping nonlinearity problem
can be furnished by traveling waves in suspension bridges. The nonlinear
equations with jumping nonlinearity have been extensively studied by
McKenna and Walter [8], Tarantello [14], Micheletti and Pistoia [10,11]
and many the other authors. Tarantello, Micheletti and Pistoia dealt
with the biharmonic equations with jumping nonlinearity and proved
the existence of nontrivial solutions by degree theory and critical points
theory. Lazer and McKenna [7] dealt with the one dimensional elliptic
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equation with jumping nonlinearity for the existence of nontrivial solu-
tions by the global bifurcation method. For the multiplicity results of
the solutions of the nonlinear parabolic problem we refer to [6, 9].

The purpose of this paper is to find the number of weak solutions of
(1.1)

The steady-state case of (1.1) is the elliptic problem

∆w + bw+ − aw− − sφ1 = 0 in Ω, (1.2)

w = 0 on ∂Ω.

For the multiplicity results for the solutions of (1.2) we refer to [9].

We observe that 0 < λ1 < λ2 ≤ · · · ≤ λk → ∞ are the eigenvalues
of the eigenvalue problem −∆u = λu in Ω, u|∂Ω = 0 and φk is the
eigenfunction corresponding to the eigenvalue λk for each k. We note
that the first eigenfunction φ1(x) > 0.

The main results are the following:

Theorem 1.1. Assume that a < λ1 < λ2 < b < λ3 and s > 0.
Then (1.1) has at least four periodic solutions.

Generally we have the following result:

Theorem 1.2. Assume that λn < a < λn+1 < λn+2 < b < λn+3,
n ≥ 0, and s > 0. Then (1.1) has at least four periodic solutions.

For the proof of Theorem 1.1 and Theoem 1.2 we use the variational
reduction method. The organization of this paper is the folllowing: In
section 2 we introduce the Hilbert space H whose elements are expressed
by the square integrable Fourier series expansions on Ω × (0, 2π), con-
sider the parabolic problem (1.2) on H and obtain some results on the
operator Dt −∆. In section 3 we prove Theorem 1.1 and Theorem 1.2.

2. Parabolic problem on the Hilbert space H

Let Q be the space Ω× (0, 2π). The space L2(Ω× (0, 2π)) is a Hilbert
space equipped with the usual inner product

< v, w >=
∫ 2π

0

∫
Ω

v(x, t)w̄(x, t)dxdt

and a norm
‖v‖L2(Q) =

√
< v, v >.
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We shall work first in the complex space L2(Ω× (0, 2π)) but shall later
switch to the real space. The functions

Φjk(x, t) = φk
eijt

√
2π

, j = 0,±1,±2, . . . , k = 1, 2, 3, . . .

form a complete orthonormal basis in L2(Ω × (0, 2π)). Every elements
v ∈ L2(Ω× (0, 2π)) has a Fourier expansion

v =
∑
jk

vjkΦjk

with
∑
|vjk|2 < ∞ and vjk =< v,Φjk >. Let us define a subspace H of

L2(Ω× (0, 2π)) as

H = {u ∈ L2(Ω× (0, 2π))|
∑
jk

(j2 + λ2
k)

1
2 u2

jk < ∞}. (2.1)

Then this is a complete normed space with a norm

‖u‖ = [
∑
jk

(j2 + λ2
k)

1
2 u2

jk]
1
2 .

A weak solution of problem (1.1) is of the form u =
∑

ujkΦjk satisfying∑
|ujk|2(j2 + λ2

k)
1
2 < ∞, which implies u ∈ H. Thus we have that if u

is a weak solution of (1.1), then ut = Dtu =
∑

j k ijujkΦjk belong to H

and −∆u =
∑

λkujkΦjk belong to H.
We have some properties on ‖ · ‖ and Dt −∆. Since |ij + λk| ≥ 1 for

all j, k, we have that:

Lemma 2.1. (i) ‖u‖ ≥ ‖u(x, 0)‖ ≥ ‖u(x, 0)‖L2(Ω).
(ii) ‖u‖L2(Q) = 0 if and only if ‖u‖ = 0.
(iii) ut −∆u ∈ H implies u ∈ H.

Proof. (i) Let u =
∑

j k ujkΦjk. Then

‖u‖2 =
∑

(j2 + λ2
k)

1
2 u2

jk ≥
∑

λ2
ku

2
jk(x.0) = ‖u(x.0)‖2

≥
∑

u2
jk(x, 0) = ‖u(x, 0)‖2

L2(Ω).

(ii) Let u =
∑

j k ujkΦjk.

‖u‖ = 0 ⇔
∑
j k

(j2 + λ2
k)

1
2 u2

jk = 0 ⇔
∑
j k

u2
jk = 0 ⇔ ‖u‖L2(Q) = 0.
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(iii) Let ut −∆u = f ∈ H. Then f can be expressed by

f =
∑

fjkΦjk,
∑
j k

(j2 + λ2
k)

1
2 f2

jk < ∞.

Then we have

‖(Dt −∆)−1f‖2 =
∑
j k

(j2 + λ2
k)

1
2

j2 + λ2
k

f2
jk < C

∑
j k

f2
jk < ∞

for some C > 0.

Lemma 2.2. For any real α 6= λk, the operator (Dt −∆− α)−1 is
linear, self-adjoint, and a compact operator from L2(Ω × (0, 2π)) to H
with the operator norm 1

|α−λk| , where λk is an eigenvalue of −∆ closest
to α.

Proof. Suppose that α 6= λk. Since λk → +∞, the number of elements
in the set {λk| λk < α} is finite, where λk is an eigenvalue of −∆. Let
h =

∑
j k hjkΦjk, where Φjk = φk

eijt
√

2π
. Then

(Dt −∆− α)−1h =
∑
j k

1
im + λn − α

hjkΦjk.

Hence

‖(Dt −∆− α)−1h‖2 =
∑
j k

1
j2 + (λk − α)2

(j2 + (λk − α)2)
1
2 h2

jk

≤
∑
j k

Ch2
jk < ∞

for some C > 0. Thus (Dt − ∆ − α)−1 is a bounded operator from
L2(Ω × (0, 2π)) to H and also send bounded subset of L2(Ω × (0, 2π))
to a compact subset of H, hence (Dt−∆−α)−1 is a compact operator.

From Lemma 2.2 we obtain the following lemma:

Lemma 2.3. Let F (x, t, u) ∈ L2(Ω×(0, 2π)). Then all the solutions
of

ut −∆u = F (x, t, u) in L2(Ω× (0, 2π))

belong to H.
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With the aid of Lemma 2.3 it is enough to investigate the existence
of solutions of (1.1) in the subspace H of L2(Ω× (0, 2π)), namely

Dtu = ∆u + bu+ − au− − sφ1 in H. (2.2)

From now on we restrict ourselves to the real L2-space and observe
that this is an invariant space for R. So L2(Ω × (0, 2π)) denotes the
real square-integrable functions on Ω × (0, 2π) and H the subspace of
L2(Ω× (0, 2π)) satisfying (2.1).

3. Proof of Theorem 1.1 and Theorem 1.2

Assume that a < λ1 < λ2 < b < λ3 and s > 0. We shall use the
contraction mapping theorem to reduce the problem from an infinite
dimensional one in L2(Q) to a finite dimensional one.

Let V be the two dimensional subspace of H spanned by Φ01(x) and
Φ02(x) and W the subspace spanned by Φ0n, n ≥ 3 and Φc

mn, Φs
mn,

m ≥ 1. Then W is the orthogonal complement of V in H.
From now on we restrict ourselves to the real L2-space and observe

that this is an invariant space for R. So L2(Ω × (0, 2π)) denotes the
real square-integrable functions on Ω × (0, 2π) and H the subspace of
L2(Ω× (0, 2π)) satisfying (2.1). Let P be an orthogonal projection from
H onto V . Then for all u ∈ H, u = v +w, where v = Pu, w = (I−P )u.

Therefore (2.2) is equivalent to

(a) w = (Dt −∆)−1(I − P )(b(v + w)+ − a(v + w)−1),

(b) Dtv = ∆v + P (b(v + w)+ − a(v + w)− − sφ1), (3.1)
where Dt = ∂

∂t .
Let us show that for fixed v, (3.1.a) has a unique solution w = θ(v)

and that θ(v) is Lipschitz continuous in terms of v. Let σ be the spec-
trum of Dt−∆. Then σ = {λn±im| n ≥ 1, m ≥ 0}. Let α = 1

2(λ1+λ2).
We rewrite (3.1.a) as

(Dt −∆− α)w = (I − P )(b(v + w)+ − a(v + w)−1 − α(v + w))

or
w = (Dt −∆− α)−1(I − P )gv(w) (3.2)

where
gv(w) = b(v + w)+ − a(v + w)−1 − α(v + w).

Since
|gv(w1)− gv(w2)| ≤ max{|b− α|, |a− α|}|w2 − w1|,

‖|gv(w1)− gv(w2)‖| ≤ max{|b− α|, |a− α|}‖|w2 − w1‖|,
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where ‖ · ‖ is the norm in H. Since the operator (Dt − α)−1(I − P ) is
a self-adjoint, compact linear map from (I − P )H onto itself, it follows
that

‖(Dt−∆−αI)−1(I −P )‖ = dist(α, {(λn± im−α)−1| m ≥ 0, n ≥ 2}).
Therefore for fixed v ∈ V , the right hand side of (3.2) defines a Lipschitz
mapping (I − P )H into itself with Lipschitz constant γ < 1. Therefore
by the contraction mapping principle, for given v ∈ V , there exists a
unique w = θ(v) ∈ W which satisfies (3.2). it follows that, by the
standard argument principle, θ(v) is Lipschitz continuous in terms of v.

Thus we have a reduced equation (2.2) to the equivalent equation

Dtv = ∆v + P (b(v + θ(v))+ − a(v + θ(v))− − sφ1) (3.3)

defined on the two dimensional subspace PH spanned by {Φ01(x),Φ02(x)}.
We note that if v ≥ 0 or v ≤ 0, then θ(v) = 0. If we put v ≥ 0 (v ≤ 0)

and θ(v) = 0 in (3.1.a), equation (3.1.a) is satisfied, respectively. Since
v = c1Φ01 + c2Φ02, there exists a cone C1 defined by c1 ≥ 0, |c2| ≤ ε0c1

so that v ≥ 0 for all v ∈ C1 and a cone C2, c ≤ 0, |c2| ≤ ε0|c1| so that
v ≤ 0 for all v ∈ C2. We know that w = θ(v) = 0 for v ∈ C1 ∪ C2, but
we do not know θ(v) for all v ∈ PH. We consider the map

v 7→ T (v) = −Dtv + ∆v + P (b(v + θ(v))+ − a(v + θ(v))−).

First we consider the image of the cone C1. If v = c1Φ01 + c2Φ02, we
have that

T (v) = −λ1c1Φ01 − λ2C2Φ02 + b(c1Φ01 + c2Φ02)

= (λ1 − b)c1Φ01 + (λ2 − b)c2Φ02.

Thus the image of the rays c1Φ01 ± ε0c1Φ02 are

(λ1 − b)c1Φ01 + (λ2 − b)ε0c1Φ02

or the rays

d1Φ01 ± ε0(
λ2 − b

λ1 − b
)d1Φ02.

Thus T maps C1 into the cone

D1 = {d1Φ01 + d2Φ02|d1 ≥ 0, |d2| ≤ ε0(
b− λ2

b− λ1
)}.

Similary for C2 we can calculate the image under T . If c1 ≤ 0,

T (c1Φ01 ± ε0c1Φ02) = (a− λ1)c1Φ01 ± (a− λ2)ε0c1Φ02.

Thus T (v) = sφ1 has one solution in each of the cones C1, C2, namely
sΦ01
b−λ1

, sΦ01
a−λ1

. Now we need a lemma.
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Lemma 3.1. There exists d > 0 so that

(T (c1Φ01 + c2Φ02),Φ01) ≥ d|c2|.

Proof. By the definition of T (v),

T (c1Φ01 + c2Φ02) = (−Dt + ∆)(c1Φ01 + c2Φ02)

+P (b(c1Φ01 + c2Φ02 + θ(c1Φ01 + c2Φ02))+

−a(c1+Φ01+c2Φ02+θ(c1Φ01+c2Φ02))−).
So if u = c1Φ01 + c2Φ02 + θ(c1Φ01 + c2Φ02), then

(T (c1Φ01 + c2Φ02),Φ01) = ((−Dt + ∆ + λ1)(c1Φ01 + c2Φ02),Φ01)

+(bu+ − au− − λ1u, Φ01).
The first term is zero because (−Dt + ∆ + λ1)Φ01 = 0 and −Dt + ∆ is
self-adjoint. The second term satisfies bu+ − au− − λ1u ≥ γ|u|, where
γ = min{b − λ1, λ1 − a} > 0. Therefore (T (c1Φ01 + c2Φ02),Φ01) ≥
γ

∫
|u|Φ01. Now there exists d > 0 so that γΦ01 ≥ d|Φ02| and therefore

γ

∫
|u|Φ01 ≥ d

∫
|u||Φ02| ≥ d|

∫
uΦ02| = d|(u, Φ02)|.

Thus we prove the lemma.

We shall describe the behavior of T in the complement of the two
cases C1 and C2. Let us consider the image under T of c1Φ01 + c2Φ02

with c2 ≥ ε|c1|, c2 = l for some l > 0. By Lemma 3.1, the image T (L) of
c2 = l, |c1| ≤ 1

ε l must lie to the right of the line c1 = dl and must cross
the positive Φ01 axis in the image space. Thus we have shown that if
u = c1Φ01 + lΦ02 + θ(c1Φ01 + lΦ02), l > 0, |c1| ≤ l

ε . Then u satisfies,
for some c1, −Dtu + ∆u + bu+ − au− = sφ1 for some s > dl and l > 0.
Letting ũ = t

su, we see that ũ satisfies

(−Dt + ∆)ũ + bũ− aũ = tφ1.

Similarly we can show the existence of another solution ǔ satisfying

−Dtǔ + ∆ǔ + bǔ+ − aǔ− = tφ1

with (ǔ, Φ02) < 0. Thus we have four solutions, one in each of the four
cones, where C1, C2 divide the Φ01, Φ02 plane into. We prove Theorem
1.1. For the proof of Theorem 1.2 we set V be the two dimensional
subspace of H spanned by Φ0n+1(x) and Φ0n+2(x) and W the subspace
spanned by Φ0n, Φ0n+3, n ≥ 1 and Φc

mn, Φs
mn, m ≥ 1. Then W is

the orthogonal complement of V in H. The other parts of the proof of
Theorem 1.2 have the similar process to that of Theorem 1.1.
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