Browse > Article
http://dx.doi.org/10.5831/HMJ.2015.37.3.299

LEAST-SQUARES SPECTRAL COLLOCATION PARALLEL METHODS FOR PARABOLIC PROBLEMS  

SEO, JEONG-KWEON (Department of Mathematics, Chonnam National University)
SHIN, BYEONG-CHUN (Department of Mathematics, Chonnam National University)
Publication Information
Honam Mathematical Journal / v.37, no.3, 2015 , pp. 299-315 More about this Journal
Abstract
In this paper, we study the first-order system least-squares (FOSLS) spectral method for parabolic partial differential equations. There were lots of least-squares approaches to solve elliptic partial differential equations using finite element approximation. Also, some approaches using spectral methods have been studied in recent. In order to solve the parabolic partial differential equations in parallel, we consider a parallel numerical method based on a hybrid method of the frequency-domain method and first-order system least-squares method. First, we transform the parabolic problem in the space-time domain to the elliptic problems in the space-frequency domain. Second, we solve each elliptic problem in parallel for some frequencies using the first-order system least-squares method. And then we take the discrete inverse Fourier transforms in order to obtain the approximate solution in the space-time domain. We will introduce such a hybrid method and then present a numerical experiment.
Keywords
first-order least-squares method; parabolic equation; Fourier transform;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J.H. Bramble, R.D. Lazarov and J.E. Pasciak, A least-squares approach based on a discrete minus one inner product for first order systems, Math. Comp. 66-219 (1997) 935-955.   DOI
2 C. Bernardi and Y. Maday, Approximation Spectrales de Problemes aux Limites Elliptiques, Springer-Verlag, Paris (1992).
3 J. H. Bramble and T. Sun, A negative-norm least squares method for Reissner-Mindlin plates, Math. Comp., 67 (1998) 901-916.   DOI
4 Z. Cai, R. D. Lazarov, T. Manteuffel, and S. McCormick, First-order system least squares for second-order partial differential equations: Part I, SIAM J. Numer. Anal., 31 (1994) 1785-1799.   DOI
5 Z. Cai, T. Manteuffel, and S. McCormick, First-order system least squares for second-order partial differential equations: Part II, SIAM J. Numer. Anal., 34 (1997) 425-454.   DOI
6 Z. Cai and B.C. Shin, The discrete first-order system least squares: the second-order elliptic boundary value problem, SIAM J. Numer. Anal., 40 (2002) 307-318.   DOI
7 C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, New York (1988).
8 C. L. Chang, Finite element approximation for grad-div type systems in the plane, SIAM J. Numer. Anal., 29 (1992) 452-461.   DOI
9 P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, New York, 1978.
10 J. Douglas, Jr., J.E. Santos and D. Sheen, Approximation of scalar waves in the space-frequency domain, Math. Model Mehtods Appl. Sci., 4 (1994) 509-531.   DOI
11 J. Douglas, Jr., J.E. Santos, D. Sheen and L.S. Bennethum, Frequency domain treatment of one-dimensional scalar waves, Math. Model Mehtods Appl. Sci., 3 (1993) 171-194.   DOI
12 G.J. Fix, M.D. Gunzburger and R.A. Nicolaides, On finite element methods of the least squares type, Comput. Math. Appl. 5-2 (1979) 87-98.   DOI
13 G.J. Fix and E. Stephan, On the finite element-least squares approximation to higher order elliptic systems, Arch. Rational Mech. Anal., 91-2 (1985) 137-151.   DOI
14 X. Feng and D. Sheen, An elliptic regularity estimate for a problem arising from the frequency domain treatment of waves, Trans. Am. Math. Soc., 346 (1994) 475-487.   DOI
15 P. Hessari and B.-C. Shin, The least-squares pseudo-spectral method for Navier-Stokes equations, Comput. Math. Appl., 66 (2013) 318-329.   DOI
16 S.D. Kim, H.-C. Lee and B.-C. Shin, Pseudo-spectral least-squares method for the second-order elliptic boundary value problem, SIAM J. Numer. Anal., 41-4 (2003) 1370-1387.   DOI
17 S.D. Kim, H.-C. Lee and B.-C. Shin, Least-squares spectral collocation method for the Stokes equations, Numer. Meth. PDE., 20 (2004) 128-139.   DOI
18 S.D. Kim and B.-C. Shin, $H^{-1}$ least-squares method for the velocity-pressure-stress formulation of Stokes equations, Appl. Numer. Math., 40 (2002) 451-465.   DOI
19 C.-O. Lee, J. Lee, D. Sheen and Y. Yeom, A frequency-domain parallel method for the numerical approximation of parabolic problems, Comput. Meth. Appl. Mech. Engrg., 169 (1999) 19-29.   DOI
20 C.-O. Lee, J. Lee and D. Sheen, Frequency domain formulation of linearized Navier-Stokes equations, Comput. Meth. Appl. Mech. Engrg., 187 (2000) 351-362.   DOI
21 J. Lee and D. Sheen, An accurate numerical inversion of Laplace transforms based on the location of their poles, Comput. Math. Appl., 48 (2004) 1415-1423.   DOI
22 J. Lee and D. Sheen, A parallel method for backward parabolic problems based on the Laplace transformation, SIAM J. Numer. Anal., 44-4 (2006) 1466-1486.   DOI
23 A. I. Pehlivanov, G. F. Carey, and R. D. Lazarov, Least squares mixed finite elements for second order elliptic problems, SIAM J. Numer. Anal., 31 (1994) 1368-1377.   DOI
24 M. M. J. Proot and M. I. Gerritsma A least-squares spectral element formulation for the Stokes problem, J. of Sci. Comput., 17 (2002) 285-296.   DOI
25 A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer-Verlag, Berlin Heidelberg (1994).
26 D. Sheen, I.H. Sloan and V. Thomee, A parallel method for time-discretization of parabolic problems based on contour integral representation and quadrature, Math. Comp., 69 (2000) 177-195.
27 D. Sheen, I.H. Sloan and V. Thomee, A parallel method for time-discretization of parabolic equations based on Laplace transformation and quadrature, IMA J. Numer. Anal., 23-2 (2003) 269-299.   DOI
28 P. B. Bochev and M. D. Gunzburger, Finite element methods of least-squares type, SIAM Review, 40 (1998) 789-837.   DOI