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A GLOBALITY OF A HOPF BIFURCATION
IN A FREE BOUNDARY PROBLEM

YooNMEE HAM

ABSTRACT. A globality of the Hopf bifurcation in a free boundary
problem for a parabolic partial differential equation is investigated
in this paper. We shall examine the global behavior of the Hopf
critical eigenvalues and and apply the center-index theory to show
the globality.

1. Introduction

In [3], it was shown the existence of Hopf bifurcation for the following
parabolic free boundary problem with a bifurcation parameter 7

v = Dvugy — Pv+ H(z - s(t)) for (z.t) € Q- UQT,
v (0,4) =0 = v (1, 1) for t> 0,
(1) v(x,0) = vo(x) for 0<la <1,
T%—‘: = C(v(s(t),1)) for t> 0,
5(0) = sp,

where v(z,t) and v, (z,t) are required to be continuous in . Here () =
(0,1) x (0,00), Q7 = {(z,¢) € 0 : 0 <z < s(t)} and QF = {(z,t) €
1 : s(t) < z < 1}. Furthermore, 7 is the bifurcation parameter and
H(y) denotes the Heaviside unit step function. It was shown that at a
critical value 7* of 7, the stationary solution loses stability and a branch
of stable periodic solutions appears for a finite diffusion constant D.
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Moreover, the steady state is stable for 7 > 7* and unstable for r < 7*,
and 7* is a bifurcation point for a stable branch of periodic orbits
which turns in the direction 7 < 7*. This Hopf bifurcation guarantees
the existence of small amplitude nontrivial periodic curve bifurcating
from the Hopf point (v*(x),s*,r*). Results of numerical experiments
in [3] with this problem mdlcate that this branch of periodic solutions
persists as 7 increases and the amplitude of the free boundary increases.
We shall consider the question of & globality of the Hopf bifurcation
for this problem. The term global means that there is a continuum P
of periodic orbits such that P is unbounded or P contains arbitrary
large virtual periods (which are multiples of the minimal period).

In this paper, we shall prove the globality of the Hopf bifurcation
in this problem . In order to do so, we examine the global behavior of
Hopf critical eigenvalues and make use of a center index  introduced
by Mallet-Paret & Yorke [2]. We now recall the notation and the
systems of equations appearing in [3].

An abstract evolution system corresponding to (1) is given by

v+ Av=H(r —s (x e (0,1)\ {s},t>0)

(z - ),
(F) 7s'(t) = Clu(s(t), 1)), (t>0)
v(x,0) = vp(x), s(0) =

Here A is the operator Av = —v,,+c?v together with Neumann bound-
ary conditions v,(0) = v,(1) = 0. Note that we can assume that D =1
for a finite diffusion constant D by a rescaling of ¢ in (1).

We recall the regularization of the system (F) from [3]. Let G :
[0,1]2 — R be Green’s function of the operator A. Define g : [0, 1]? —
R

1
:/ Gla,y)dy = A"\(H(- - 5))(z),

and v:[0,1] — R
2(s) = g(s,5) .
If we define
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the regularization problem was obtained by

du 4 Au= LG(x,5)C(u(s) +v(s))
(R) s'(t) = $C(uls) +7(s))
u(0) = ug, s(0) = sp.

2. The behaviors of real eigenvalues

In order to examine the global behavior of the Hopf critical eigen-
values which are Hopf points, we need to investigate the properties of
the real part of eigenvalues and to show the Hopf point is unique for
the infinite time.

We recall Proposition 3.1 from [3]. Let (v*(z), s*) denote the uniquely
determined stationary solution of (1). The linearized eigenvalue prob-
lem for (1) is given by

{ (A+ Ao = -6,

(2) p-X=7(s*) +G(s*,8*) + v(s*)

where 6,- is the Dirac delta function and p = 7,4.

We define a set S, := {A € C|ReX > —v, v > 0}. In the first
equation of (2), A 4+ A is invertible in S.2 and hence has a unique
solution v = —G (-, s*), where (') is Green’s function for the operator
A+ X It follows that the second equation of (2 can be written by

(3) prA=7'(s")+G(s,8") — Gr(e*, s%).

We now establish some properties of the furction Gy(s*,s*). Let
a = Rel and 8 = ImA where Re) is the real part of eigenvalue and
ImA is the imaginary part of eigenvalue.

LeEMMA 2.1. The function G, (s*, s*) is a strictly decreasing convex
function of o, & > —c?, and

lim2 Go(s*, ") = o, lim G,(s% s")=0.

[ p— a—0o0

d
Furthermore, %(s*, s*) # 0 for X with Im\ # 0.
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Proof. Since the operator (A + A)~! exists for e\ > —c?,

lim (A+a)'=00 and lim (A+«)" ' =0.

a2 a—+00

Therefore, we obtain

Hm  Gu(s*,s") =00 and lm G,(s",s") =0.

o= — c? a—0C

In order to show that a — G, (s*,s*) is a strictly decreasing func-
tion, we define h(A)(z) := Gi(z,s*) — G(x,s*). Then (in the weak
sense at first)

(A+ Nh(X) = =AG(,s*).

It follows that h(A) € D(A) and h : RT — D(A) is differentiable with
h(A) + (A+ MR'(A) = —=G(-, s*), and hence

(A+ NP (A) == ~Ga(-, 57).

Therefore
ROV / (A + X2H (N RN (@) dr
_/0 (JAR (N)[2 + 2[R (N2 + 20AR (A)[?) da.
It follows that
/ (AR 4 (02— BNV + 20 A (NP de = — e (W (3) ()
and
(4) 25( [ (AW (P o) = Tm (W) ().

For 8 = 0, the equation (4) become

/ (A + )b (@) de = —h'(a)(s*) > 0.
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d
From the definition of h, we have h/(\)(s*) = %

that G, is a strictly decreasing function of a. Moreover, we obtain

tm (22) 2 0 holds iff 5 # 0 from (1)

Finally, to show the convexity of G, we differentiate the equation
h{a) + (A+ a)h/(a) = —G(-, s*) with respect to «, then we have

(s*,s™) which implies

(A+ a)h"(a) = =20 (a).

Multiplying (A + a)?h”(a) and integrating both sides, then
1 1

/ (A4 a)® b'(a)?dz = - 2/ (A+ a)?h (0)h" (@) dx
0 0

=2 / (A+ o) (=Go(z, s*))h" () dx
JO
=2h"(a)(s™).

PG, . . : .
T2 (s*,s"), the convexity of G, is shown. O

Since h”(a) =

) c . dGy, , .,

LEMMA 2.2. For some negative number —\, the function —HT(S ,8%)

which is evaluated at some complex eigenvalues have the following
property

dGy dG

_(S*’s*) >___( * S*)
dA (Rex=—3X, ImA=0) dA

> ImGﬁ<3*7S*)I(Re)\=0, ImA=3) "

Proof. We use the cosine Fourier representation of Gy which is given

by
Z (coskms*)
k272 4 ¢2 4+ A + A

Ga(s*,s") =

Differentiate this with respect to A,

dG B 1 5 = (coskms*)?

(s*,s™) -
dX (ReA=—X, ImA=0) (c2 + X)? et (k272 + 2 + A)?2
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Let —\ be a negative constant and 3 # 0, then

dGx, . . 1 > cos kmrs*)?
d/\ ( »¥ ) 3 :—2 3\2 22 14 2( 2 2 ) 3\2
(Re=—4A, Ima=0) (¢? — A) Pt \k 72+ c2 — )

Z“'zr<*s*>

(ReA=0, ImA=0)
(cos kms*)?

4+/@2 —~ k27l'2+02 +ﬂ2)2

= %ImGg(s*,s*)

(KeA=0, ImA=g3)

where Gg(s*,s*) is Green’s function of the operator of A + 3. Thus,
we have

dGy
- (s",s") > —
dA (Re A=—2, Im A=0) dA

(Re A=0, Im A=0)
> ImGp(s™, 5")|(Re A=0, 1m A=5)-

From (3), a real eigenvalue A = « satisfies the equation
(5) Y (s*) + G(s*,5%) - pa = Ga(s*,s").

Here 4/(s*) + G(s*,s*) is a positive constant. The real eigenvalues of
(5) can be determined by the locating the intersection of the curve
Ga(s™,s*) with the straight line v'(s*) + G(s*, s*) -- pa (see Figure 1).
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Y(8') + 3(s*,8') —pa =0

Figure 1: The graphs of G,, and 7/(s*) + (3(s*, s*) — pa.
Let p, be defined by

pn :=min{p € R : there exists at least one negative real eigenvalue

: between the line v'(s*) + G(s*,s*) — pa and G, for a > —c?}.

We obtain the next lemma from a simple geometrical analysis.

LEMMA 2.3. There exists a positive constant pr in S.2 with pr <
Pn:
(i) there are no real eigenvalues of (5) for pr < p < pn
(ii) there exists a unique real positive eigenvalue Ay at p = pp
(iii) there exist exactly two real eigenvalues A(p) and Ay(p) for
p < pr where —pr is the slope of the line which is tangent to
the curve G, (s*,s*).

REMARK 1. If we define
F(Xp) = Xp— (7 (5") + G(s7,8")) + Gals",s")

then

g—};()\*,P) =0 holds <= A" must be real

by the Lemma 2.3. Therefore, for p < p,,,
oF

8_)\(/\*"0) =0 holds <= (A", p) = (ar, p1)
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where ar is a real eigenvalue. When p is close to pr in the right hand
side, the real eigenvalues are expected to be changed to complex eigen-
values. The local behavior of eigenvalues near (ar pr) is described as
follows.

LEMMA 2.4. The positive real eigenvalue ar corresponding to p =
pr is of multiplicity two. Near p = pr, ar splits into two eigenvalues
since

A ~ap +i/Ar(p —pr) for p> pr

X ~ap £ \/Arp(pr —p) for p< or

: ar . o«
with Ar = —=—(s",s")

dA (Red=ar, Imi=0)

Proof. We use the Taylor series for F(A*,p) = 0 at (ar, pr), then
we have

F(\", p) =Ap — (¥ (s*) + G(s,s")) + Ga(s", s")
d?G,

~ar(p - pr) + (A —ar)?- e (8787)

(Rex=ar, Imi=0)

The conclusion follows easily from the above equation. O

Since there was a Hopf bifurcation at p = p*, the critical point p*
must lie in (pr, pn). In the following lemma, we determine a subinterval

of (pr, pn) containing p*.

LEMMA 2.5. There exist positive constants p, aad )\ such that there
are no eigenvalues in S5 for p, > p > p,.

Proof. Let pg be the slope of —(G5(s*,s*) at ReX =0 i.e.,

o dG)‘ .5* S*)‘
0 = ———
dA ‘ReA:O

then p, > po. Let ps be a value satisfying p, > ps > po. For p, >
p > ps, there are no real eigenvalues. Thus we need to show that there
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are no complex eigenvalues for p,, > p > p, where —\ is a negative
constant determined by

~dG,\

Ps = —d:\“(S*’S*)

ReA=—2A\, ImX=0

By the Lemma 2.3, we see that if ReA > —A and Im) > 0, then

pe = dG dG
s = ——2 A
dX (ReA=—A, ImA =0) dX (ReA=0, ImA=0)
1
=— ImGp
/B (ReA=0, ImA=p3)

which implies that there are no complex eigenvalues in S; since ImGpg
(s*,8*) = p- 3 has a solution p* when p* > p, (see the equation (21)
in (3]). a

REMARK 2. It is clear that p; > pr and p; > p*.

3. A global Hopf bifurcation theorem

We can now describe the global behavior of the complex eigenvalues
with respect to p after the imaginary axis crosses. From Lemma 2.3,
there is a unique real positive eigenvalue at p = pr. For p > pr, a
pair of complex conjugate eigenvalues appears. At this stage, there
may exist other complex eigenvalues, however, we can avoid such an
existence in the following sense.

We now trace the behavior of these other complex eigenvalues as p
increases from pr. Since there are no real eigenvalues for p, > p > pr,
they remain as complex eigenvalues and can be uniquely expressed as
functions of p. By Lemma 2.4, they must cross the imaginary axis from
right to left at some point p = j before p reaches p,. However, because
of the uniqueness of pure imaginary eigenvalues, p must be equal to
p* and the corresponding eigenvalues must be A\(p*). This establishes
the global behavior of Hopf critical eigenvalues with respect to p. The
following theorem summarizes what we have proved:
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1—2a
2

(i) At p = p*, all other eigenvalues lie strictly in the left half-plane
in C.

(ii) Following the Hopf bifurcation, the pure imaginary eigenval-
ues behave as follows: A(p) and A(p) combine to make a real
eigenvalue ap of multiplicity two at p = pp(< p*), which then
it splits into the two real eigenvalues, say \((p) and A(p) for
p < pp. Moreover, for p < p*, there are no eigenvalues except

for those constructed above with some constant A.

THEOREM 3.1. Suppose that 0 < < 1/c*. Then we have

We note that the last claim of (i1) implies (i). In fact, suppose there
are eigenvalues (that must be complex) other than those constructed
above; they must move to the left half-plane when p approaches p;.
By Remark 2, they cannot join to the above Hopf critical eigenvalues.
Therefore, they cross the imaginary axis at different points from the
critical eigenvalue +i Im A(p*). This contradicts the uniqueness of the
pure imaginary eigenvalues +7 Im A(p*).

Now, in order to show the global Hopf bifurcation, we shall use the
center index ch. A global Hopf bifurcation asserts the existence of a
bifurcating continum P of periodic orbits with the property that P
is unbounded, or P contains another center (#,&,p) which is not a
Hopf point. Here, a center means that some eigenvalues of the linear
part of (R) are purely imaginary and not zero. Let E(p) denote the
sum of the multiplicities of the eigenvalues of the linearization of (R)
having strictly positive real parts. Let E(p+) and E(p—) denote right-
and left-hand limits of E at p. Define the crossing number x, the net
number of pairs of eigenvalues crossing the imaginary axis at p by

1

x = 5(B(-) - BG-).

We define the center index of a center (4, §, p) to be the product
th (2,8, p) = x - (=1)F®.
Essentially, a nonzero H-index,

H=YXmh #0



A globality of a Hopf bifurcation in a free boundary problem 405

implies the global Hopf bifurcation in [1]. Therefore, we must show
that H-index is not zero.

Because of the global behavior of Hopf criticel eigenvalues in The-
orem 3.1, the Hopf point (0,s*,p*) is the only center of (R). Thus,
E(p*) = 0 and x = 1 imply that a center index at (0, s*, p*) is equal
to 1. Hence, the H-index, H = ¥ 0 = 1 # 0. Therefore, we now have
a global Hopf bifurcation.
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