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LEAST-SQUARES SPECTRAL COLLOCATION

PARALLEL METHODS FOR PARABOLIC PROBLEMS

Jeong-Kweon Seo and Byeong-Chun Shin∗

Abstract. In this paper, we study the first-order system least-
squares (FOSLS) spectral method for parabolic partial differential
equations. There were lots of least-squares approaches to solve
elliptic partial differential equations using finite element approxi-
mation. Also, some approaches using spectral methods have been
studied in recent. In order to solve the parabolic partial differen-
tial equations in parallel, we consider a parallel numerical method
based on a hybrid method of the frequency-domain method and
first-order system least-squares method. First, we transform the
parabolic problem in the space-time domain to the elliptic prob-
lems in the space-frequency domain. Second, we solve each elliptic
problem in parallel for some frequencies using the first-order sys-
tem least-squares method. And then we take the discrete inverse
Fourier transforms in order to obtain the approximate solution in
the space-time domain. We will introduce such a hybrid method
and then present a numerical experiment.

1. Introduction

Let Ω be an open convex polygon in R2. We consider the following
parabolic problem:

(1.1)





c pt −∇ · (a∇p) = f in Ω× (0,∞),
p = 0 on ΓD × (0,∞),

n · (a∇p) = 0 on ΓN × (0,∞),
p(·, 0) = 0 in Ω,
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where c ∈ L2(Ω) and a ∈ W 1,∞(Ω) are bounded positive functions
of only x, and f(·, t) ∈ L2(Ω) for t > 0 but f(·, t) ≡ 0 for t > T ;
∂Ω = ΓD ∪ ΓN denotes the partition of the boundary of Ω; and n is
the outward unit vector normal to the boundary. For simplicity, assume
that both ΓD and ΓN are nonempty, with the obvious generalization to
quotient spaces when one of them is empty in the subsequent sections.
We further assume that the functions c, a and f are all real-valued
functions, and c and a are bounded positive functions.

The Fourier transform p̂(·, ω) of a function p(·, t) in time and the
Fourier inversion are given by

p̂(·, ω) =
∫ ∞

−∞
p(·, t) exp(−iωt) dt

and

p(·, t) = 1

2π

∫ ∞

−∞
p̂(·, ω) exp(iωt) dω.

In order to take the Fourier transformation for the space-time problem
(1.1) we extend f and p by zeros for t < 0. Then, the Fourier transform
p̂ satisfies the following set of elliptic problems depending on ω: for all
ω ∈ R

(1.2)





iωc p̂−∇ · (a∇p̂) = f̂ in Ω,
p̂ = 0 on ΓD,

n · (a∇p̂) = 0 on ΓN .

Since p(x, t) is a real function, its Fourier transform satisfies the conju-
gate relation:

p̂(x,−ω) = p̂(x, ω) for all ω ∈ R
and the Fourier inversion is given by

p(x, t) =
1

π
Re

(∫ ∞

0
p̂(x, ω) exp(iωt) dω

)
.

The approximate solution for the problem (1.1) was obtained by
time stepping methods such as backward Euler and Crank-Nicolson
methods traditionally. In recent a natural parallel algorithm which
does not require any significant communication costs was introduced by
transforming the parabolic problem (1.1) in the space-time domain into
the independent elliptic problems (1.2) in the space-frequency domain
[11, 12, 15, 20, 21]. See [22, 23, 27, 28] for the Laplace transformation.

Recently there has been lots of interest in the use of first-order system
least-squares method (FOSLS) for numerical approximations of elliptic
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partial differential equations, Stokes equations and Navier-Stokes equa-
tions. For a use of finite element method, the least-squares approach was
widely studied in [1, 2, 4, 5, 6, 13, 14, 19, 24] and a least-squares method
using pseudo spectral approximation were studied in [16, 17, 18, 25]. The
least-squares methods have several benefits such that the resulting alge-
braic system is always symmetric positive definite and the methods can
avoid LBB compatibility condition. For more details we refer to [1] and
references therein.

In this paper, we consider a parallel numerical method based on a
hybrid method of the frequency-domain method and first-order system
least-squares method to solve the parabolic partial differential equation
(1.1) in parallel. We apply the first-order system pseudo spectral least-
squares method to the frequency-domain formulation (1.2) using the
similar approaches given in [17]. And then we take the discrete inverse
Fourier transformation using adaptive Gaussian quadrature rule in fre-
quency variable to obtain the approximate solution in the space-time
domain.

The paper consists of as follows. In section 2, we deliver the first-
order system least-squares and show the existence of solution. In sections
3, we develop the least-squares pseudo spectral collocation method in-
cluding the norm equivalence and spectral convergence. In section 4,
we provide the formulation for the inverse Fourier transformation and
provide numerical experiment in section 5.

2. First-Order System Least-Squares (FOSLS)

In this section, we will apply the first-order system least-squares ap-
proach to the problem (1.2). We suppress the hat mark on the notation
of all space-frequency function p̂ for simplicity.

Introducing an independent vector variable

u = a
1
2 ∇p

and using the following identities

∇× (a−
1
2u) = 0 in Ω and τ · (a− 1

2u) = 0 on ΓD,
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we obtain an equivalent extended system to problem (1.2): for all ω ∈ R

(2.1)





−∇ · (a 1
2u) + iωc p = f in Ω,

u− a
1
2∇p = 0 in Ω,

∇× (a−
1
2u) = 0 in Ω,

p = 0 on ΓD,

n · (a 1
2u) = 0 on ΓN ,

τ · (a− 1
2u) = 0 on ΓD.

We use standard notations and definitions for the real-valued Sobolev
spaces Hs(Ω), associated with the norms ‖ · ‖s, s ≥ 0. But, H0(Ω)
coincides with L2(Ω), in which the associated inner product and norm
are denoted by (·, ·) and ‖ · ‖, respectively.

Denote by vr and vi the real-part and imaginary-part of a complex-
valued vector or scalar function v, respectively. Then, the L2-inner
product and L2-norm for complex-valued functions u = ur + iui and
v = vr + ivi are given by

(u, v)c =

∫

Ω
uv̄ dx = (u, v̄) and ‖v‖c = (v, v̄)

1
2 =

(‖vr‖2 + ‖vi‖2
) 1

2 .

From now on, let us identify the complex-valued function v = vr + ivi
by v := [vr, vi] with real-valued functions vr and vi. Also, denote by
Hs

c (Ω) = Hs(Ω)×Hs(Ω) and L2
c(Ω) = L2(Ω)× L2(Ω).

Let V be a subspace of H1
c (Ω)

2 given by

V = {q = [qr, qi] ∈ H1
c (Ω) : q = 0 on ΓD}

equipped with the norm

‖q‖V =
(‖qr‖21 + ‖qi‖21

) 1
2 .

Denote the curl operator and its formal adjoint by

∇× = (−∂2, ∂1) and ∇⊥ =

(
∂2
−∂1

)
.

Let

H(div a
1
2 ; Ω) = {v ∈ L2(Ω)2 : ∇ · (a 1

2v) ∈ L2(Ω)}
and

H(curl a−
1
2 ; Ω) = {v ∈ L2(Ω)2 : ∇× (a−

1
2v) ∈ L2(Ω)},

which are Hilbert spaces under norms

‖v‖
H(div a

1
2 ;Ω)

=
(
‖v‖2 + ‖∇ · (a 1

2v)‖2
) 1

2
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and

‖v‖
H(curl a−

1
2 ;Ω)

=
(
‖v‖2 + ‖∇ × (a−

1
2v)‖2

) 1
2
,

respectively. Define the subspaces

H0(div a
1
2 ; Ω) = {v ∈ H(div a

1
2 ; Ω) : n · (a 1

2v) = 0 on ΓD}
H0(curl a

− 1
2 ; Ω) = {v ∈ H(curl a−

1
2 ; Ω) : τ · (a− 1

2v) = 0 on ΓN}
where τ represents the unit vector tangent to the boundary oriented
counterclockwise. Let

U = {v = [vr,vi] ∈ L2
c(Ω)

2 : vr, vi ∈ H0(div a
1
2 ; Ω)∩H0(curl a

− 1
2 ; Ω) },

equipped with the norm

‖v‖2U = ‖v‖2c + ‖∇ · (a 1
2v)‖2c + ‖∇ × (a−

1
2v)‖2c .

Now, define the first-order least-squares functional as summing the L2-
norms of residual equations
(2.2)

Gω(v, q; f) =
∥∥f +∇· (a 1

2v)− iωc q
∥∥2
c
+
∥∥v−a

1
2∇q

∥∥2
c
+
∥∥∇× (a−

1
2v)

∥∥2
c
.

Using the similar techniques for the first-order least-squares approaches
given in [5] and [6], one may prove the following lemma.

Lemma 2.1. For each frequency ω, there exists a constant C, only
dependent on a, c, Ω, such that
(2.3)

1

Cω

(∥∥v∥∥2U +
∥∥q∥∥2

V

)
≤ Gω(v, q; 0) ≤ Cω

(∥∥v∥∥2U +
∥∥q∥∥2

V

)
∀ (v, q) ∈ U × V.

Proof. The upper bound is an immediate consequence of the triangle
inequality and the bounds of coefficients a and c. Now, let us show
the lower bound. It follows from the definition and the Cauchy-Schwarz
inequality that
∥∥a 1

2∇q
∥∥2
c
=
(
a

1
2∇q − v, a

1
2∇q

)
c
+
(
a

1
2v,∇q

)
c

=
(
a

1
2∇q − v, a

1
2∇q

)
c
−
(
∇ · (a 1

2v), q
)
c

=
(
a

1
2∇q − v, a

1
2∇q

)
c
−
(
∇ · (a 1

2v)− iωc q, q
)
c
− (iωc q, q)c

≤∥∥a 1
2∇q − v

∥∥
c

∥∥a 1
2∇q

∥∥
c
+

∥∥∇ · (a 1
2v)− iωc q

∥∥
c

∥∥q∥∥
c
+ Cω

∥∥q∥∥2
c
.

Using the Poincaré-Friedrich’s inequality yields that
∥∥a 1

2∇q
∥∥
c
≤ Cω

(∥∥a 1
2∇q − v

∥∥
c
+

∥∥∇ · (a 1
2v)− iωc q

∥∥
c
+

∥∥q∥∥
c

)
.
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It also follows from the triangle inequality that
∥∥v∥∥U ≤ Cω

(∥∥a 1
2∇q − v

∥∥
c
+
∥∥∇ · (a 1

2v)− iωc q
∥∥
c
+
∥∥∇× (a−

1
2v)

∥∥
c
+
∥∥q∥∥

c

)
.

Combining the last two estimates together with the Poincaré-Friedrich’s
inequality, we have

∥∥v∥∥2U +
∥∥q∥∥2

V
≤ C

(
Gω(v, q; 0) +

∥∥q∥∥2
c

)
.

Now, using the standard compactness argument, one may easily show
the conclusion (2.1).

The functional Gω(v, q; f) can be also written by, with v = [vr,vi]
and q = [qr, qi]

Gω(v, q; f) =
∥∥fr +∇ · (a 1

2vr) + ωc qi
∥∥2 + ∥∥fi +∇ · (a 1

2vi)− ωc qr
∥∥2

+
∥∥vr − a

1
2∇qr

∥∥2 +
∥∥vi − a

1
2∇qi

∥∥2 +
∥∥∇× (a−

1
2vr)

∥∥2 +
∥∥∇× (a−

1
2vi)

∥∥2.

(2.4)

Then the corresponding minimization problem for (1.2) is to mini-
mize the quadratic functional Gω(v, q; f) over U × V : find (u, p) :=
([ur,ui], [pr, pi]) ∈ U × V such that

(2.5) Gω(u, p; f) = inf
(v,q)∈U×V

Gω(v, q; f).

The corresponding variational problem is as follows:

Find (u, p) :=
(
[ur,ui], [pr, pi]

) ∈ U × V such that

Aω(u, p;v, q) = Fω(v, q) ∀ (v, q) ∈ U × V,

(2.6)

where the bilinear form Aω(·; ·) is given by

Aω

(
[ur,ui], [pr, pi] ; [vr,vi], [qr, qi]

)

=
(
∇ · (a 1

2ur) + ωc pi, ∇ · (a 1
2vr) + ωc qi

)

+
(
∇ · (a 1

2ui)− ωc pr, ∇ · (a 1
2vi)− ωc qr

)

+
(
ur − a

1
2∇pr, vr − a

1
2∇qr

)
+

(
ui − a

1
2∇pi, vi − a

1
2∇qi

)

+
(
∇× (a−

1
2ur), ∇× (a−

1
2vr)

)
+
(
∇× (a−

1
2ui), ∇× (a−

1
2vi)

)

(2.7)
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and the linear form Fω(·) is given by

Fω

(
[vr,vi], [qr, qi]

)
=−

(
fr, ∇ · (a 1

2vr) + ωc qi

)

−
(
fi, ∇ · (a 1

2vi)− ωc qr

)
.

(2.8)

Now, we establish the well-posedness of the problem (2.6) in the follow-
ing theorem.

Theorem 2.2. For each frequency ω, there exists a unique solution
to the problem (2.6).

Proof. Note that

Aω(v, q;v, q) = Aω

(
[vr,vi], [qr, qi] ; [vr,vi], [qr, qi]

)
= Gω(v, q; 0).

Then, the coerciveness and continuity of the bilinear form Aω(·; ·) are
immediate consequences of the Lemma (2.1). Also it is apparent that
Fω(·, ·) is a continuous linear form. Hence, the problem (2.6) has a
unique solution from the Lax-Milgram lemma.

3. Spectral least-squares approximation

In this section, we assume that the functions a and c are constants
and Ω = (−1, 1)2. we further assume that the right hand side f in (2.1) is
a continuous function. Let PN be the space of all polynomials of degree
less than or equal to N . Let {ξi}Ni=0 be the Legendre-Gauss-Lobatto
(LGL) points on [−1, 1] such that −1 =: ξ0 < ξ1 < · · · , < ξN−1 < ξN :=
1, in which {ξi}Ni=0 are the zeros of (1 − t2)L′

N (t) where LN is the N th

Legendre polynomial and the corresponding quadrature weights {wi}Ni=0
are given by
(3.1)

w0 = wN =
2

N(N + 1)
, wj =

2

N(N + 1)

1

[LN (ξj)]2
, 1 ≤ j ≤ N − 1.

The Gaussian quadrature rule yields the exactness of numerical integra-
tion such that

(3.2)

∫ 1

−1
p(t)dt =

N∑

i=0

wi p(ξi), ∀ p ∈ P2N−1.

The two-dimensional LGL points {xij} and the corresponding weights
{wij} are given by

xij = (ξi, ξj), wij = wiwj , i, j = 0, 1, · · · , N.
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Let QN be the space of all polynomials of degree less than or equal to
N with respect to each single variable x and y. For any continuous
functions u and v over Ω̄, the associated discrete scalar product and
norm are given by

(3.3) 〈u, v〉N =

N∑

i,j=0

wij u(xij) v(xij) and ‖v‖N = 〈v, v〉1/2N .

Then, we have from (4.1) that

(3.4) 〈u, v〉N = (u, v) for uv ∈ Q2N−1

and it is well-known that

(3.5) ‖v‖ ≤ ‖v‖N ≤ γ∗‖v‖, ∀ v ∈ QN ,

where γ∗ =
(
2 + 1

N

)
. For any continuous function v, we denote by

INv ∈ QN the interpolant of v at the LGL-points {xij}. Then

(3.6) INv(x) =
N∑

i,j=0

v(xij)ψij(x), ∀ x ∈ Ω̄

where ψij are the Lagrange interpolation polynomials of degree N for
i, j = 0, 1, 2, · · · , N .

The interpolation error estimate is given by

(3.7) ‖v − INv‖k ≤ C Nk−s‖v‖s, k = 0, 1,

provided v ∈ Hs(Ω) for s ≥ 2 (see [3, 8, 26]) and using (3.4)–(3.7) yields
that for all u ∈ Hs(Ω), s ≥ 2, and vN ∈ QN

(3.8) |(u, vN )− 〈u, vN 〉N | ≤ C N−s ‖u‖s ‖vN‖.
Let QD

N = QN ∩H1
D(Ω). We now recall the orthogonal projection PD

1,N :

H1
D(Ω) → QD

N through

(3.9) (∇PD
1,Nu,∇θN ) = (∇u,∇θN ), ∀ θN ∈ QD

N .

Then, for all u ∈ Hs(Ω) ∩H1
D(Ω), with s ≥ 1, (see [26])

(3.10) ‖u− PD
1,Nu‖k ≤ C Nk−s‖u‖s, k = 0, 1.

Let us recall the inverse inequality (see [26])

(3.11) ‖vN‖1 ≤ C N2 ‖vN‖, ∀vN ∈ QN .

Let UN and V N be a finite dimensional subspaces of U and V , respec-
tively:

UN = U ∩ [QN ×QN ]2 and V N = V ∩ [QN ×QN ].
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Define the discrete first-order least-squares functional as summing the
discrete Legendre spectral norms of the residual equations: with v =
[vr,vi] and q = [qr, qi]

Gω,N (v, q; f) =
∥∥fr +∇ · (a 1

2vr) + ωc qi
∥∥2
N
+

∥∥fi +∇ · (a 1
2vi)− ωc qr

∥∥2
N

+
∥∥vr − a

1
2∇qr

∥∥2
N
+
∥∥vi − a

1
2∇qi

∥∥2
N

+
∥∥∇× (a−

1
2vr)

∥∥2
N
+

∥∥∇× (a−
1
2vi)

∥∥2
N
.

(3.12)

Then the corresponding discretized minimization problem for (1.2) is to
minimize the quadratic functional Gω,N (vN , qN ; f) over UN × V N : find

(uN , pN ) :=
(
[uN

r ,uN
i ], [pNr , pNi ]

) ∈ UN × V N such that

(3.13) Gω,N (uN , pN ; f) = inf
(vN ,qN )∈UN×V N

Gω,N (vN , qN ; f).

And, the corresponding variational problem is as follows:

Find (uN , pN ) :=
(
[uN

r ,uN
i ], [pNr , pNi ]

) ∈ UN × V N such that

Aω,N (uN , pN ;vN , qN ) = Fω,N (vN , qN ) ∀ (vN , qN ) ∈ UN × V N ,

(3.14)

where the bilinear form Aω,N (·; ·) is given by

Aω,N

(
[ur,ui], [pr, pi] ; [vr,vi], [qr, qi]

)

=
〈
∇ · (a 1

2ur) + ωc pi, ∇ · (a 1
2vr) + ωc qi

〉
N

+
〈
∇ · (a 1

2ui)− ωc pr, ∇ · (a 1
2vi)− ωc qr

〉
N

+
〈
ur − a

1
2∇pr, vr − a

1
2∇qr

〉
N
+
〈
ui − a

1
2∇pi, vi − a

1
2∇qi

〉
N

+
〈
∇× (a−

1
2ur), ∇× (a−

1
2vr)

〉
N
+
〈
∇× (a−

1
2ui), ∇× (a−

1
2vi)

〉
N

(3.15)

and the linear form Fω,N (·) is given by

Fω,N

(
[vr,vi], [qr, qi]

)
=−

〈
fr, ∇ · (a 1

2vr) + ωc qi

〉
N

−
〈
fi, ∇ · (a 1

2vi)− ωc qr

〉
N
.

(3.16)

Now, we establish the well-posedness of the problem (3.14) using the
similar arguments of [17] in the following theorem.
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Theorem 3.1. For each frequency ω, there exists a constant C, only
dependent on a, c, Ω, such that
(3.17)

1

C ω

(∥∥vN
∥∥2
U +

∥∥qN∥∥2
V

)
≤ Gω,N (vN , qN ; 0) ≤ Cω

(∥∥vN
∥∥2
U +

∥∥qN∥∥2
V

)

for all (vN , qN ) ∈ UN × V N .

Proof. Since the fact that a, c and ω are constants, we can easily
show that the real parts and imaginary parts of the functions

∇ · (a 1
2uN ) + ωc pN , uN − a

1
2∇pN and ∇× (a−

1
2uN )

are polynomial functions of degree less than or equal to N if (vN , qN ) ∈
UN × V N . Hence, we have the following equivalence from (3.5):

1

C
Gω(v

N , qN ; 0) ≤ Gω,N (vN , qN ; 0) ≤ C Gω(v
N , qN ; 0)

for all (vN , qN ) ∈ UN × V N . Now, the bound (3.1) is an immediate
consequence of Lemma 2.1 together with the last inequality.

Using the standard techniques for spectral convergence(see [3], [17],
[26]), one may easily show that our Legendre pseudo-spectral least-
squares approach has the following spectral convergence:

Theorem 3.2. Assume that the solution (u, p) of the problem (2.6)
is in Hs

c (Ω)
3 for some s ≥ 1 and f ∈ H`

c(Ω) for some integer ` ≥ 2.
Let (uN , pN ) ∈ UN ×V N be the discrete solution of the problem (3.14).
Then there exists a constant C such that
(3.18)

‖u−uN‖U+‖p−pN‖V ≤ C
[
N1−s(‖u‖Hs

c (Ω)+‖p‖Hs
c (Ω))+N−`‖f‖H`

c(Ω)

]
.

4. Inverse Fourier Transformation of Approximate Solution

Denote by
(
ûN (ω), p̂N (ω)

)
:=

(
ûN (x, ω), p̂N (x, ω)

)
the solution of

the problem (3.14) for each frequency ω > 0. In this section, with a
fixed sufficiently large ω∗ > 0 such that

(
ûN (ω), p̂N (ω)

)
is negligible

for ω > ω∗, we will approximate the time-domain solution p(x, t) of

the problem (1.1) and its flux u = a
1
2∇p using the adaptive Gaussian

quadrature rule.
Let {aj}mj=0 be a partition of interval [0, ω∗] satisfying 0 = a0 <

a1 < · · · < am = ω∗. Let hj = aj − aj−1 for j = 1, · · · ,m and let
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h = max{hj : i = 1, 2, · · · ,m }. Then, the LGL-points of each interval
[aj−1, aj ] are given by

ξji =
aj−1 + aj

2
+

(aj − aj−1)

2
ξi ∀ i = 0, 1, · · · , n,

where ξi are the LGL-points of the interval [−1, 1]. The corresponding

quadrature weights wj
i are given by

wj
i = wi ∀ j = 1, 2, · · · ,m, i = 0, 1, · · · , n,

where wi are quadrature weights corresponding to ξi.
Then, the adaptive Gaussian quadrature rule yields the exactness of

numerical integration such as

(4.1)

∫ ω∗

0
p(ω)dω =

m∑

j=1

n∑

i=0

wj
i p(ξ

j
i ),

for all piecewise polynomial p(ω) of degree less than or equal to 2n− 1.
Recall that the Fourier inversion of q̂(x, ω) is given by

q(x, t) =
1

π
Re

(∫ ∞

0
q̂(x, ω) exp(iωt) dω

)
.

Since q̂(x, ω) = q̂r(x, ω) + iq̂i(x, ω), we have the following Fourier inver-
sion of q̂(x, ω):

q(x, t) =
1

π

∫ ∞

0

(
q̂r(x, ω) cosωt− q̂i(x, ω) sinωt

)
dω.

Denote by

qω∗(x, t) =
1

π
Re

(∫ ω∗

0
q̂(x, ω) exp(iωt) dω

)

and

qω∗,g(x, t) =
1

π
Re




m∑

j=1

n∑

i=0

q̂(x, ξji ) exp(it ξ
j
i )w

j
i


 .

Now, the approximate solutions of the solution p(x, t) and its flux u =

a
1
2∇p of the time-domain problem (1.1) are given by

pNω∗,g(x, t) =
1

π

m∑

j=1

n∑

i=0

(
p̂Nr (x, ξji ) cos(tξ

j
i )− p̂Ni (x, ξji ) sin(tξ

j
i )

)
wj
i
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and, for k = 1, 2,

uN,k
ω∗,g(x, t) =

1

π

m∑

j=1

n∑

i=0

(
ûN,k
r (x, ξji ) cos(tξ

j
i )− ûN,k

i (x, ξji ) sin(tξ
j
i )

)
wj
i

where uN
ω∗,g =

(
uN,1
ω∗,g, u

N,2
ω∗,g

)
and ûN =

(
ûN,1, ûN,2

)
.

Denote by, for t > 0

E(p, t) = ‖p(x, t)− pNω∗,g(x, t)‖ and E(u, t) = ‖u(x, t)− uN
ω∗,g(x, t)‖.

Then, we have from the triangle inequality that

E(p, t) ≤ ‖p(x, t)−pω∗(x, t)‖+‖pω∗(x, t)−pω∗,g(x, t)‖+‖pω∗,g(x, t)−pNω∗,g(x, t)‖.
Then, using the similar argument of [20] with appropriate assumptions,
we can show that, for t > 0

E(p, t) −→ 0 and E(u, t) −→ 0 as N,ω∗ −→ ∞
provided with appropriate m and n.

5. Computational experiments

As the numerical example of exact solution we take p(x, y, t) = g(x, y)h(t)

and its Fourier transformation is then given by p̂(x, y, ω) = g(x, y)ĥ(ω)
where

g(x, y) = sin(3π(x+ 1)/4) sin(3π(y + 1)/4),

h(t) =
t

t2 + 1
and ĥ(ω) = −ie−ω,

here h(t) and ĥ(ω) are a well-known Fourier transform pair. Figure
1 and 2 show their variation of function values along with time t and
frequency ω, respectively.

We apply above p̂(x, y, ω) to




−∇ · (a 1
2u) + iωc p = f in Ω,

u− a
1
2∇p = 0 in Ω,

∇× (a−
1
2u) = 0 in Ω,

p = 0 on ΓD,

n · (a 1
2u) = 0 on ΓN ,

τ · (a− 1
2u) = 0 on ΓD.

and we take a = 1 and c = 1. For computing, Use of spectral collocation
approximation we compute the algebraic problems using PCGM with
high performance parallel machine; we use a linux-cluster named APPC
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which is consist of 8 nodes. And we program a code using Fortran 90
and MPI.

Figure 1. h(t) = t
t2+1

Figure 2. ĥ(ω) = −ie−ω

Fixing ω∗ = 40, we denote Nω∗ by the number of LGL-points for a
gaussian quadrature of the inverse Fourier transform. Fixing Nω∗ = 40,
we present some numerical results listed in Table 1 and 2. Recall that
N denotes the degree of polynomials for spectral least-squares approxi-
mation.
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N time ||E(p, t)|| cputime

5 0.25 6.0968D-002 0.10
0.50 5.0840D-002
0.75 3.8152D-002
1.00 2.8694D-002

9 0.25 3.9379D-005 5.33
0.50 3.1689D-005
0.75 2.2744D-005
1.00 1.6294D-005

13 0.25 4.5284D-009 27.93
0.50 3.6534D-009
0.75 2.6440D-009
1.00 1.9231D-009

Table 1. Norm of error fixing
Nω∗ = 40.

N time ||E(p, t)|| cputime

17 0.25 1.5402D-013 696.02
0.50 1.2466D-013
0.75 9.0899D-014
1.00 6.6873D-014

21 0.25 1.3931D-013 3336.01
0.50 1.3834D-013
0.75 1.2811D-013
1.00 1.1416D-013

25 0.25 8.6443D-014 6808.57
0.50 9.5164D-014
0.75 9.6722D-014
1.00 9.4099D-014

Table 2. Norm of error fixing
Nω∗ = 40.

In Table 1 and 2 we list the norm of error between p(x, y, t) and
pNω∗,g(x, y, t) for several numbers of degree of polynomials for spectral
least-squares approximation at some fixed times of t.

On the other hand, fixing N = 17, we present some other numerical
results listed in Table 3 and 4. In Table 3 and 4 we list the norm of
error between p(x, y, t) and pNω∗,g(x, y, t) for several numbers of degree
of polynomials for the approximation of Fourier inversion at some fixed
times of t.

In those numerical result, referring to Table 2 and 3 we find out an
interesting fact that choosing Nω∗ = 24 for Fourier inversion, the ap-
proximate solution pNω∗,g(x, y, t) appears to have a similar scales of norms
of error but rather much smaller computational times to be taken com-
pared to the choice of Nω∗ = 40; of course taking Nω∗ = 24 it gets much
shorter times of computation than it takes for Nω∗ = 40, and this result
reflects a well known typical situation happening when we use gaussian
quadrature rule in integration.
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Nω∗ time ||E(p, t)|| cputime

8 0.25 0.1061 172.54
0.50 0.2129
0.75 0.3720
1.00 0.7995

16 0.25 1.4911D-008 291.70
0.50 1.4258D-007
0.75 9.8006D-007
1.00 4.5734D-005

24 0.25 1.5404D-013 494.95
0.50 1.2472D-013
0.75 9.0983D-014
1.00 5.4001D-013

Table 3. Norm of error fixing
N = 17.

Nω∗ time ||E(p, t)|| cputime

32 0.25 1.5382D-013 624.51
0.50 1.2444D-013
0.75 9.0836D-014
1.00 6.7119D-014

40 0.25 1.5402D-013 763.57
0.50 1.2466D-013
0.75 9.0899D-014
1.00 6.6873D-014

Table 4. Norm of error fixing
N = 17.

6. Conclusion

In this paper, we have applied the first-order least-squares spectral
collocation methods to the time-dependent problems.

First, we transformed the time-domain problem to the frequency-
domain problems which are independent of frequencies ω. For each
frequency ω, we applied the least-squares spectral collocation method
to the frequency-domain problems. From the least-squares approaches,
we derive the positive definite symmetric algebraic system for each fre-
quency so that we can further compute the algebraic problems using
very fast iteration methods like PCGM with high performance paral-
lel machine. Use of spectral collocation approximate allows us to have
high accurate convergence. Also, it can be very easily implemented with
relatively small system.

After we solve the frequency-domain problem, we transform the ap-
proximate solution to the time-domain approximate solution inversely
using the adaptive Gaussian quadrature rule. Using the property that
the Fourier transform q̂(ω) of a function q(t) goes to zero as ω → ∞, we
can apply the adaptive strategy for inverse Fourier transform and save
the cost to find the inversion.
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