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MULTIPLICITY RESULT FOR SEMILINEAR
PARABOLIC EQUATIONS

WaN SE KiMm

ABSTRACT. An Ambrosetti-Prodi type multiplicity result for periodic-
Dirichlet problem to semilinear parabolic equation is treated.

1. Introduction

Let Z*, Z, R* and R be the set of all positive integers, integers,
nonnegative reals and reals, respectively, and let 2 C R™, n > 1, be a
bounded domain with smooth boundary €2 which is assumed to be of
class C2.

Let Q = (0,27) x  and L?(Q) be the space of measurable Lebesgue
square integrable real-valued functions on ) with usual inner product
< +,- > and corresponding norm | - ||2.

By H}(€) we mean the completion of C}(2) with respect to the norm

| - |1 defined by
16]2 = / S |Do¢(z)da.

|a]<1

H?(R2) stands for the usual Sovolev space ; i.e., the completion of C?(2)
with respect to the norm || - ||2 defined by

18] = / S |De¢(z)Pde.
|| <2

Let g : R — R be a continuous function. Moreover, we assume that
there exist constants ag and by such that

(H,) lg(u)| < aplu| + bg for all u € R.
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The purpose of this work is to investigate a multiplicity result for weak
solution of the nonlinear parabolic equations

(E) -(Z—ltb —Agu— Mu+ g(u) = \S/ﬁ_lﬂ + h(t,z) in Q
(By) u(t,z) =0 on (0,2m) x 69
(B2) u(0,z) = u(27,z) on O

where A; denotes the first eigenvalue of —A with zero Dirichlet boundary
condition and ¢; is the correspanding positive normalized eigenfunction;
Le, ¢1(z) >0o0n Q and [, ¢3(z)dz =1, and h € L2(Q) with

//Q h(t, z)¢1(z)dtdr = 0.

More precisely, the purpose is to find constants sy < s; such that the
problem
(E)(B1)(Bz2) has no solution, at least one solution, or at least two solu-
tions according to s < sp, s = s; or s > s7.

This type of result, so-called an Ambrosetti-Prodi type result has
been initiated by Ambrosetti-Prodi [1] in 1972 in the study of a Dirich-
let problem to elliptic equations and developed in various directions by
several authors to ordinary and partial differential equations. A no-
table discussion for AP type results for periodic and Dirichlet boundary
value problem has been done by Fabry, Mawhin and Nkashama [4] and
Chiappinelli, Mawhin and Nugari [2], respectively, for second order ordi-
nary differential equations. For AP type result for periodic solutions of
higher order ordinary differential equations, we refer the results of Ding
and Mawhin in [3]. AP type results for Lienard systems have been done
by Kim [8], and Hirano and Kim [7], and AP type results for dissipative
hyperbolic equations have been done by Kim [9]. Lazer and Mckenna
treated AP type multiplicity result for elliptic and parabolic equations
in [10]. In our result, we assume the coercive growth condition on g
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and make use of degree theory in our proof. Our result, in particular, is
different from that of [10].
Here we assume the following

(H2) lim infg(u) = 400,
ju|—ro0
(Hj) lim sup |_g_(_1i)_‘ < A2 — A
U—— 00 u

Then we have that

THEOREM. Assume (H,), (Hz) and (H3). Then there exist real num-
bers sg < sy such that

(i) (E)(B1)(Bz2) has no solution for s < sq.

(ii) (E)(B1)(B.2) has at least one solution for s = s;.

(iii) (E)(B1)(Bz) has at least two solution for s > s;.

2. Preliminary results

Let’s define the linear operator

L: DomL C L*(Q) — L*(Q)

by
DomE = fu & L*((0,2m), H*(2) N HY (@) 9e € (@),
u(0,z) = u(2m, ),z € N}
and 3
u
Lu = Frie Au — Au

Using Fourier series and Parseval inequality, we get easily

Ou ou o
< Lu, it ”EHLZ’ for all uw € DomL.
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Hence kerL = ker(A + MI) = kerL* since A + A1l is self-adjoint
and ker(A + A1I) is one space dimension generated by the eigenfunc-
tion ¢; . Therefore L is a closed, densely defined linear operator and
Im(L) = [kerL]*; ie., L2(Q) = kerL @ ImL. Let’s consider a conti-
nous projection Py : L2(Q) — L?(Q) such that kerP, = ImL. Then
L*(Q) = kerL@kerP;. We consider another continuous projection
Py : L*(Q) — L?*(Q) defined by

(P2h)(t,z) = -21? / /Q h(t, z)éy (z)dtdzy (z).

Then we have L*(Q) = ImP, @ ImL, kerP; = ImL, and L?(Q)/ImL
is isomorphism to ImP;.
Since dim[L*(Q)/ImL] = dim[ImP,] = dim[kerL] = 1, we have an
isomorphism J : ImP, — kerlL.
By the closed graph theorm, the generalized right inverse of L defined
by
K = [Llpomrarmr) ™' : ImL — ImL

is continuous. If we equip the space DomIL with the norm

lwlloons = [[ 1+ (5 + Y- (Dfwlanas,

1B8l<2

fhen there exist a constant ¢ > 0 independently of h € ImL, u == Kh
such that
|KAllpomr. < cllh|Lz.

Therefore K : ImL — ImL is continuous and by the compact imbedding
of DomL in L?(Q), we have that K : ImL — ImL is compact

LEMMA 2.1. L is closed , densely defined linear operator such that
kerL = [ImL]* and such that the right inverse K : ImL — ImlL is
completely continuous.

3. Multiplicity result

Let us consider the following

(E¥) %; — Azu— Mu+ pg(u) = pso + ph(t,z) in Q
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(B1) u(t,z) =0 on (0,2m) x 0N

(B2) u(0,z) = u(27,z) on Q

where ¢ € [0,1] and ¢(z) = %2—?

Let L : DomL C L?(Q) — L%(Q) be defined as before. If we define a
substitution operator N* : L2(Q) — L%(Q) by

(N.f)(ti 1“) = ,ug(u) - /1'3¢ - lu‘h’(t7 JJ)

for u € L?(Q) and (¢,z) € Q, then N* maps continuously into itself and
take bounded sets into bounded set. Let G be any open bounded subset
of L2(Q). Then P,N* : G — L?(Q) is bounded and K(I — P) : G —
L?(Q) is compact and continuous. Thus N# is L-compact on G.

The coincidence degree Dy (L + N#,G) is well defined and constant
in pif Lu+ NE #0for p € [0,1], s € Rand u € DomLNOG. It is easy
to check that (u,u) is a weak solution of (E*¥) if and only if u € DomL
and

(3.1%) Lu + Nbu = 0.
From (H;) and (H3), we may assume that

— inf a(u) > —
m Jrele(u)> 00

and there exist a € (0, A\ — A1) and b > 0 such that
lg(u)] < alu| + b for all u<0.

Here we have the following lemma.

LEMMA 3.1. If(H;) (H.) and (H3) is satisfied, then for any s* € Rt
there exists M(s*) > 0 such that

lullz < M(s¥)

holds for each possible weak solution u = a¢y + 4, with a« € R and
i € ImL, of (E*) with p € [0,1] and |s| < s*.
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PROOF. Suppose there exists a constant s with |s| < s* and corre-
sponding solutions (u,, ttr,) of (3.1%») such that

lim |upljLz = .
n-—>r00

For each n > 1, we put u,(t,z) = a,d(z) + t,(t, ).
By extracting subsequence, we may assume that

lim lon |
n—00 ||tn || L2

= ¢ < 00.

If it is not the case, then we have from the positivity of ¢(z) that
lim |u,(t,z)| = oo a.e. on Q.
[e o]

n—

By taking the inner product with ¢ on both sides of (3.1#), we have

//Q g(un(t,z))p(z)dtdr = s < s

On the other hand, by (H2) and Fatou’s lemma, we have

lim inf / / (un(t, 2)) p(z) dtdz

which leads to a contradiction. First, we assume that 0 < ¢ < co. Then
there exist ng € N such that

(¢/2)lan|lL2 < |an| < (3¢/2)||tn]| L2 for all n > ng.

For given € > 0, we may choose § > 0 such that

/ /A 6Pdtdz < e|]%

for any measurable set A C Q with |A| < 6.
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Let 0 < 8 < ||¢|loc and Qo = {z € Q : ¢(z) > B}. Choose My > 0
such that
dMy — |m| // pdtdz > s*.
Q

Then, since lim}y|_ o, inf g(u) = oo, we have that
mo = sup{|u| : Bg(u) < Mp} < oo.

We put
Qn = {(t,2) € (0,2m) x Qo : un(t,z)| = mo}-

Then we have |Q,| < 4. In fact if |Q,| > &, then from the definition of
g we have

//Q g(un(t, x))p(z)dtdx

= //ng(un)¢($)dtdx+//(;\Qn g(un)p(z)dtdz
> Mo — [m| / /Q ¢(x)dtdz

*

> s

and this lead a contradiction. Therefore, we have

/ /Q L lendl 2 (-9 / /Q langl?.

On the other hand,

0= / /Q Ot i,
://Q\Qn an¢ﬁn+//nan¢ﬂn

<a [ /Q (o & — o — i) + / /Q ol
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From the definition of my and the above facts, we have, for all n > ng,

0 < (1/2)mg — (1/2)(1 = €)(¢/2)|[nll72 + €(3¢/2)[|n]7 2
= (1/2)mg — (¢/4)(1 + 5ec) [an |7

Therefore, {||@nr(|12} is bounded and hence {|luy||12} is bounded which
lead a contraction.

Next, we assume ¢ = 0. Then lim,,_, o, mﬂj“—ﬁ“; =1.
nllg

Taking the inner product with u, on both sides of (3.1%), we have
(A2 = M)l llZa+ < g(un), un >< 8% |am] + |lhl| 2 | £2
and hence
lim sup(Az — A — a)ldnllr2 < [max{|m|,b}|Q"? + ||h|2].

Thus {||t,| 2} is bounded and thus {|lun||r2} is bounded which leads
to another contradiction. (]

REMARK. By Lemma 3.1, we may have an a’priori bounds M;(s*) >
0 and 1 (s*) > 0 such that

laf < 71(s™), a2 < My(s™)

for each possible weak solution © = a¢ + @ of (E!) with |s| < s* and
p € [0,1].

LEMMA 3.2. If (Hy), (Hz) and (Hj3) are satisfied, then, for each s* €
R™, we can find an open bounded set G(s*) in L%(Q) such that, for each
open bounded set G in L?(Q) such that G D G(s*), we have

Di(L+ NYLG)=0 forall |s|<s".
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PROOF. Suppose that @ € R and |a] — oo, then |a¢(z)| — oo for

each z € Q. Let M = min . g(ad(x))¢(z) and W=(0, 27) x Q. Then,
by Fatou’s lemma and (Hs), we have

lim inf / / (ap(x))d(x)dtde
|a}—o00
= lim inf// (ag(z Mdtdz + M|Q)|

|at—o0

/ / lim inflg(ad(z))d(z) — Mldtdz + M|Q)|
\%'%

|| =00
Hence, there exists r2(s*) > 0 such that, for |a| > ro(s*), we have

//Q glag(z))é(z)dtdz > s~

G(s®)={u€e L2(Q)| — 7#(s")¢(z) < ad(z) < 7(s™)d(z) for z € Q, Il L2z < M}

Let

where u = ag¢(x) + @ with 7(s*) > max{r(s*),ro(s*)} and M > M
which are given in Lemma 3.1 and Remark. Let

= dmi
s = dming(x)

where d = 27 [, ¢(x)dz. If (3.15) has a solution u for some 5 € R and
p € [0,1], then by taking the inner product with ¢ on the both sides of
the equation (3.1%), we have

50 < / / ¢(x)dtdzx ==

Thus (3.15) has no solution for 5 < s.
Hence for each open bounded set G D G(s*), we have

Dp(L+ N},G)=0 for 5< sp.
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Choose 5 < sg and define
F:(D(L)NG) x [0,1] — L*(%)

by
Flu,p) = Lu+ N pyssps(u) for |s| <57

They by Lemma 3.1 and Remark, we have
0¢ F(D(L)NOG) x [0,1] for |s| < s*.
By the homotopy invariance of degree, we have, for all |s| < s*,

DL(L + N317G) = DL(F(: 1)7G)

= DL(F(-,0),G)
= D(L+ N}, G)
=0
and the proof is completed. U

LEMMA 3.3. If (H;), (H2) and (Hj) are satisfied, then there exists

81 > So such that, for each s* > s;, we can find an open bounded set
A(G(s*)) in L*(Q) on which

DL(L+ NLAG()| =1
for all s; < s < s*.

PROOF. Let

9(aod(zo) + o) = min - g(ag(z) + 1)
lal<A(s™)
|l < M
and s; = |dmax e ~ g(u)]-
u€lapp(z)—M,aod(x)+M)]
Define

A(G(s™)) = {u € L*(Q)lao¢(z) < ad(z) < 4(s*)p(z) for z € Q, |l 2 < M}
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where 5(s*) and M are given in Lemma 3.2.

If s > s1, p€[0,1] and (u,u) is a possible solution of (3.14) such
that u € OA(G(s*)), then by (B;), Lemma 3.1 and Remark, we have
necessarily a = ag and

agd(z) — M < ad(z) + a(t,z) < apd(z) + M, (t,z) € (0,27) x €.

By taking the inner product with ¢ on the both sides of (3.1%#), we have

// u(t, z))¢(x)dtdr = s.
s1 > // u(t, z))o(z)dtdr = s

which is impossible, thus for s > s, and g € [0,1], D (L+N#, A(G(s*)))
is well defined and

Dr(L + N¥,A(G(s"))) = Dp(JPaN¥, A(G(s*)) N kerL, 0)

where P, N# : L2(Q) — kerL is defined by
(PaNEu)(t,7) = [ / / u(t, z))p(x)dtdz — 5)¢(z).
Now let T : ker L. — R be defined by
T(ag(z)) = .
Then, for u =1,

Dr(L + N, A(G(s*))) = Dg(JPN}, A(G(s*)) N kerL,0)
= Dp(T(JP,NYHYT~1, T(A(G(s*)) NkerL),0).

If we let J : ImP; — kerL be the identity map, then the operator
® = T(JP,N}HT~! will be defined by

= //Q g9(ad(x))p(z)dtdr — s.
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Thus, for s; < s < s*, we have
S(a) = // glopd(z))p(z)dtde — s < 31 —s < 0

and by the choice of 4(s*), we have

d(y(s*) = // (7(s*)p(z))p(z)]dtdx — s

>s8"—s
> 0.

Therefore |Dr(L + N}, A(G(s*))| = 1 and the proof is completed. [0

PROOF OF THEOREM. Let sg and s be constants defined in Lemma
3.2 and Remark. Part (i) has been proved in Lemma 3.3. For part (iii),
if s > 51 then we can choose G 2 A(G(s)), where G and A(G(s)) are
defined in Lemma 3.2 and Lemma 3.3, respectively.

By the additivity of degree, we have

0= (Di(L+N,,G) = DL(L+N;,A(G(5)))+Di(L+N;, G~ A(G(s)))
and hence, by Lemma 3.3,
IDL(L+ N;,G - A(G(s)))| = 1.

Therefore (3.11) has one solution in A(G(s)) and one in G—A(G(s)). For
part (ii), let {s(n)} be a sequence in R with s(;y > s¢2) > --- > s; such
that s(,)y — s1 and let {u,} be the corresponding sequence of solutions
of (3.11). Then u, = an¢(z) + @, with o, € R and i, € ImL. By
Lemma 3.1, we have a subsequence {o,, } of {a,} which converges to
some « in K.

On the other hand, by (H;), Lemma 3.1 and Remark, we can see that
{Luy,} is a bounded sequence in ImL C L%(Q). Since K : ImL — ImL
is a compact operator, and @, = K(Luy, ), we have a subsequence, say
again, {4, } converging to @ in DomL N ImL.

Therefore, we have a subsequence {u,, } of {u,} which converges to
u = ap+u with « € R and & € ImL. Since L is a closed operator,
u € DomL and u is a solution of (3.1}) for s = s;. This completes our
proof. O
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REMARK. It is another question whether we can find a constant s

such that the problem (E)(B;)(B2) has no solution, at least one solu-
tion, or at least two solutions according to s < sg, s = sg, or s > sg.
The author would like to refer to [5] containing the multiplicity results
for doubly-periodic boundary value problem to semilinear dissipative hy-
perbolic in one dimentional space.

References

A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings
with singularities between Banach space, Ann. Mat. Pura. Appl 93 (1972), 231-
247.

R. chiappinelli, J. Mawhin and R. Nugari, Generalized Ambrosetti-Prodi condi-
tions for nonlinear two-point boundary value problems, J. Diff. Eq. 69 (1987),
422-434.

5. H. Ding and J. Mawhin, A multiplicity result for periodic solutions of higher
order orinary Differential equations, Differential and Integral Equations 1 (1988),
31-40.

C. Fabry, J. Mawhin and M. Nkashama, A multiplicity result for periodic so-
lutions of forced nonlinear second order ordinary differential equations, Bull.
London Math. Soc. 18 (1986), 173-180.

N. Hirano and W. S. Kim, Multiplicity and stability result for semilinear para-
bolic equations, Discrete and Continuous Dynamical Systems 2 (1996), 271-280.
, Existence of stable and unstable solutions for semilinear parabolic prob-
lems with a jumping nonlinearity,, Nonlinear Analysis 26 (1996), 1143-1160.
N. Hirano and W. S. Kim, Multiple existence of perodic solutions for Lienard
system, Diff. Int. Eq. 8 (1995), 1805 - 1811.

W. S. Kim, Ezistence of periodic solutions for nonlinear Lienard systems, Int.
J. Math. 18 (1995), 265 - 272.

q, Multiple Doubly periodic solutions of semilinear dissipative hyperbolic
equations, J. Math. Anal. Appl. 197 (1996), 735-748.

[10] A. C. Lazer and P. J. Mckenna, Multiplicity results for a class of semi-linear

elliptic and parabolic boundary value problems, J. Math. Anal. 107 (1985), 371-
395.

[11] M. N. Nkashma and M. Willem, Time periodic solutions of boundary value prob-

lems for nonlinear heat, telegraph and beam equations, Seminarire de mathema-
tique, universite Catholique de Louvain Rapport nc 54, (1984).

Department of Mathematics
College of Natural Sciences
Hanyang University

Seoul 133-791, Korea



