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SOLVABILITY FOR THE PARABOLIC PROBLEM WITH

JUMPING NONLINEARITY CROSSING NO

EIGENVALUES

Tacksun Jung and Q-Heung Choi∗

Abstract. We investigate the multiple solutions for a parabolic
boundary value problem with jumping nonlinearity crossing no eigen-
values. We show the existence of the unique solution of the parabolic
problem with Dirichlet boundary condition and periodic condition
when jumping nonlinearity does not cross eigenvalues of the Laplace
operator −∆. We prove this result by investigating the Lipschitz
constant of the inverse compact operator of Dt − ∆ and applying
the contraction mapping principle.

1. Introduction

Ler Ω be a bounded region in Rn with smooth boundary ∂Ω. Let 0 <
λ1 < λ2 ≤ · · · ≤ λk → ∞ be the eigenvalues of the eigenvalue problem
−∆u = λu in Ω, u|∂Ω = 0 and φk be the eigenfunction corresponding to
the eigenvalue λk. We note that the first eigenfunction φ1(x) > 0.

In this paper we investigate the multiple solutions of the following
parabolic boundary value problem

ut = ∆u + f(u) + h(x, t) in Ω×R, (1.1)

u(x, t) = 0, x ∈ ∂Ω, t ∈ R,

u(x, t) = u(x, t + T ), in Ω×R,

where the period T is given.
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In particular, we consider the case T = 2π, f(u) = au+ − bu− and
h(x, t) = sφ1, that is

ut = ∆u + au+ − bu− + sφ1 in Ω×R, (1.2)

u(x, t) = 0, x ∈ ∂Ω, t ∈ R,

u(x, t) = u(x, t + 2π), in Ω×R,

The physical phenomena for this kind of parabolic problem occur in the
heat flow dynamics with discontinuous nonlinearity.

The purpose of this paper is to show the existence of the unique pe-
riodic solution of problem (1.2) under the assumption that the jumping
nonlinearity au+ − bu− does not cross any eigenvalue of −∆.

The steady-state case of (1.1) is the elliptic problem

∆w + f(u) = h(x) in Ω, (1.3)

w = 0 on ∂Ω.

In 1949, Dolph [7] shows that if the limits f ′(−∞), f ′(+∞) exist and, for
some n, λn < f ′(−∞), f ′(+∞) < λn+1, then (1.3) has a solution for all
h ∈ L2(Ω). This extended an earlier result of Hammerstein which con-
siderd the case f ′(−∞), f ′(+∞) < λ1. For work in the general version
of Hammerstein to unbounded regions or to more general h in L1(Ω) or
h a measurable function the reader may consult [4,8]. For work in gen-
eralization of these results to more general linear operators with discrete
spectrum the reader may consult [5, 12, 13, 14]. For work in the general
versions of Dolph’s theorem under the assumption that the nonlinearity
f is allowed to depend on x and u the reader may consult [12], and for
work combining these last two topics the reader may consult the recent
work of Mawhin and Ward [13].

The work of Ambrosetti and Prodi [1], and the work continued in
[10,3,2,11] have a common feature in having the assumption that the
nonlinearity depends only on u and the interval [f ′(−∞), f ′(+∞)] con-
tains some eigenvalues of the linear operator. Amann and Hess [2] and
Dancer [6] showed that if λ1 ∈ [f ′(−∞), f ′(+∞)], then when the right-
hand side of (1.3) is written

h(x) = sφ1 + h1(x).

there exists s0 = s0(h1) such that if s is greater than, equal to, or less
than s0, then (1.3) has at least two, at least one, and zero solutions,
respectively. In [11] it was shown that if λ1, . . . , λn ∈ [f ′(−∞), f ′(+∞)]
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and n is even, then there exists s1(h1) such that if s > s1, then (1.3)
has at least three (and generically four) solutions. More recently it has
been shown by Hofer [9] that if f ′(−∞) < λ1, λ2 < f ′(+∞) 6= λn for
any n, then, for h(x) = sφ1 + h1(x) and s sufficiently large, (1.3) has
at least four solutions. The restriction that f ′(+∞) 6= λn for any n was
subsequeently removed by Solimini [16]. McKenna and Walter in [15]
generalize earlier work of [11] to more general operators, including both
non selfadjoint operator, and operators whose resolvent is not compact.
In this paper we improve these results to the parabolic problem with
jumping nonlinearity. We investigate the existence of the solution of
(1.2) when jumping nonlinearity au+−bu− does not cross any eigenvalues
of −∆.

2. Main result

Let L be the parabolic operator in Rn+1

Lu = ut −∆u.

Let Q be the space Ω× (0, 2π) and H0 the space defined by

H0 = L2(Ω× (0, 2π)).

Then H0 is a Hilbert space equipped with the usual inner product

< v,w >=

∫ 2π

0

∫

Ω

v(x, t)w̄(x, t)dxdt

and a norm

‖v‖L2(Q) =
√

< v, v >.

First we shall work in the complex space H0 but shall later switch to the
real space.

The functions

Φmn(x, t) = φn
eimt

√
2π

, m = 0,±1,±2, . . . , n = 1, 2, 3, . . .

form a complete orthonormal basis in H0. Every elements v ∈ H0 has a
Fourier expansion

v =
∑
m n

vmnΦmn
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with
∑ |vmn|2 < ∞ and vmn =< v, φmn >. Let us define a subspace H

of H0 as

H = {u ∈ H0|
∑
m n

(m2 + λ2
n)

1
2 u2

mn < ∞}.

Then this is a complete normed space with a norm

‖u‖ = [
∑
m n

(m2 + λ2
n)

1
2 u2

mn]
1
2 .

A weak solution of problem (1.2) is of the form u =
∑

umnΦmn satisfying∑ |umn|2(m2 + λ2
n)

1
2 < ∞, which implies u ∈ H. Thus we have that if

u is a weak solution of (1.2), then ut = Dtu =
∑

m n imumnΦmn belong
to H and −∆u =

∑
λnumnΦmn belong to H. We note that if u ∈ H,

then au+ − bu− + sφ1 ∈ H. For simplicity of notation, a weak solution
of (1.2) is characterized by

ut −∆u = au+ − bu− + sφ1 in H. (2.1)

Our main result is the following:

Theorem 2.1. Let λk < a, b < λk+1, k ≥ 1. Then problem (2.1) has
a unique solution in H.

In section 3, we obtain some results on the operator Dt−∆ and prove
Theorem 2.1 by investigating the Lipschitz constant of the inverse com-
pact operator Dt −∆ and applying the contraction mapping principle.

3. Some results on the operator Dt−∆ and proof of Theorem
2.1

Since |im + λn| → ∞ as m, n →∞, we have that:

Lemma 3.1. (i) ‖u‖ ≥ ‖u(x, 0)‖ ≥ ‖u(x, 0)‖L2(Ω).
(ii) ‖u‖L2(Q) = 0 if and only if ‖u‖ = 0.
(iii) ut −∆u ∈ H implies u ∈ H.

Proof. (i) Let u =
∑

m n umnΦmn. Then

‖u‖2 =
∑

(m2 + λ2
n)

1
2 u2

mn

≥
∑

λ2
nu

2
mn(x, 0)

= ‖u(x, 0)‖2 ≥
∑

u2
mn(x, 0) = ‖u(x, 0)‖2

L2(Ω)
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(ii) Let u =
∑

m n umnΦmn.

‖u‖ = 0 ⇔
∑
m n

(m2 + λ2
n)

1
2 u2

mn = 0 ⇔
∑
m n

u2
mn = 0 ⇔ ‖u‖L2(Q) = 0.

(iii) Let f = ut −∆u ∈ H. Then f can be expressed by

f =
∑

fmnΦmn,
∑
m n

(m2 + λ2
n)

1
2 f 2

mn < ∞.

Then we have

‖(Dt −∆)−1f‖2 =
∑
m n

(m2 + λ2
n)

1
2

m2 + λ2
n

f 2
mn < C

∑
m n

f 2
mn < ∞

for some C > 0.

From Lemma 3.1, we obtain the following lemma:

Lemma 3.2. Let h(x, t) ∈ H0 = L2(Ω×(0, 2π)). Let a and b be not of
the form im+λn, m = 0,±1,±2, . . ., n = 1, 2, . . .. Then all the solutions
of

ut −∆u = au+ − bu− + h(x, t) in H0

belong to H.

Lemma 3.3. For any real α 6= λn, the operator (Dt−∆−α)−1 is linear,
self-adjoint, and a compact operator from H0 to H with the operator
norm 1

|α−λn| , where λn is an eigenvalue of −∆ closest to α.

Proof. Suppose that α 6= λn. Since λn → +∞, the number of ele-
ments in the set {λn| λn < α} is finite, where λn is an eigenvalue of −∆.

Let h =
∑

m n hmnΦmn, where Φmn = φn
eimt√

2π
. Then

(Dt −∆− α)−1h =
∑
m n

1

im + λn − α
hmnΦmn.

Hence

‖(Dt −∆− α)−1‖2 =
∑
m n

1

m2 + (λn − α)2
(m2 + (λn − α)2)

1
2 h2

mn

≤
∑
m n

Ch2
mn < ∞

for some C > 0. Thus (Dt−∆−α)−1 is a bounded operator from H0

to H and it also sends bounded subset of H0 to a compact subset of H,
hence (Dt −∆− α)−1 is a compact operator.
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Next we will prove the main result.

4. Proof of theorem 2.1

Suppose that λk < a, b < λk+1, k ≥ 1. Let us set

α =
1

2
(λk + λk+1).

Then problem (2.1) can be rewritten as

u = (Dt −∆− α)−1[(a− α)u+ − (b + α)u− + sφ1]. (3.1)

From Lemma 3.3, (Dt −∆ − α)−1 is a compact, self-adjoint, linear op-
erator from H0 to H with norm 1

|α−λn| . We note that

‖(a−α)(u+
2 −u−1 )−(b−α)(u−2 −u−1 )‖L2 ≤ max{|a−α|, |b−α|}‖u2−u1‖L2 .

Thus the right side of (3.1) is a Lipschitz mapping from H0 to H with
Lipschitz constant γ < 1. By the contraction mapping principle, there
exists a unique solution u ∈ H0 of (3.1). By Lemma 3.2, the solution of
(3.1) belongs to H. Thus we prove the theorem.
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