MULTIPLE SOLUTIONS FOR THE NONLINEAR PARABOLIC PROBLEM

  • Jung, Tacksun (Department of Mathematics Kunsan National University) ;
  • Choi, Q-Heung (Department of Mathematics Education Inha University)
  • Received : 2009.04.12
  • Accepted : 2009.05.26
  • Published : 2009.06.30

Abstract

We investigate the multiple solutions for the nonlinear parabolic boundary value problem with jumping nonlinearity crossing two eigenvalues. We show the existence of at least four nontrivial periodic solutions for the parabolic boundary value problem. We restrict ourselves to the real Hilbert space and obtain this result by the geometry of the mapping.

Keywords

References

  1. K. C. Chang, Infinite dimensional Morse theory and multiple solution problems, Birkhauser, (1993).
  2. Q. H. Choi and T. Jung, An application of a variational reduction method to a nonlinear wave equation, J. Differential Equations, 117, 390-410 (1995). https://doi.org/10.1006/jdeq.1995.1058
  3. T. Jung and Q. H. Choi, An application of category theory to the nonlinear wave equation with jumping nonlinearity, Honam Mathematical Journal, 26 (December 2004), no. 4, 589-608 .
  4. Q. H. Choi and T. Jung, Multiple periodic solutions of a semilinear wave equation at double external resonances, Communications in Applied Analysis 3 (1999), no. 1, 73-84.
  5. Q. H. Choi and T. Jung, Multiplicity results for nonlinear wave equations with nonlinearities crossing eigenvalues, Hokkaido Mathematical Journal 24 (1995), no. 1, 53-62. https://doi.org/10.14492/hokmj/1380892535
  6. A. C. Lazer and P.J. McKenna, Some multiplicity results for a class of semilinear elliptic and parabolic boundary value problems, J. Math. Anal. Appl. 107 (1985), 371-395. https://doi.org/10.1016/0022-247X(85)90320-8
  7. A. C. Lazer and P. J. McKenna, Global bifurcation and a theorem of Tarantello, J. Math. Anal. Appl, 181 (1994), 648-655. https://doi.org/10.1006/jmaa.1994.1049
  8. P. J. McKenna and W. Walter, Nonlinear oscillations in a suspension bridge, Archive for Rational Mechanics and Analysis 98 (1987), no. 2, 167-177 .
  9. P. J. McKenna and W. Walter, On the multiplicity of the solution set of some nonlinear boundary value problems, Nonlinear Analysis TMA 8 (1984), no. 8, 893-907. https://doi.org/10.1016/0362-546X(84)90110-X
  10. A. M. Micheletti and A. Pistoia, Multiplicity results for a fourth-order semilinear elliptic problem, Nonlinear Analysis TMA, 31 (1998), 895-908. https://doi.org/10.1016/S0362-546X(97)00446-X
  11. A. M. Micheletti and A. Pistoia, Nontrivial solutions for some fourth order semilinear elliptic problems, Nonlinear Analysis, 34 (1998), 509-523. https://doi.org/10.1016/S0362-546X(97)00596-8
  12. J. T. Schwartz , Nonlinear functional analysis, Gordon and Breach, New York, (1969).
  13. P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, C.B.M.S. Reg. Conf. Ser. in Math. 6, American Mathematical Society, Providence, R1, (1986).
  14. G. Tarantello , A note on a semilinear elliptic problem, Diff. Integ. Equations. 5(1992), 561-565.