References
- K. C. Chang, Infinite dimensional Morse theory and multiple solution problems, Birkhauser, (1993).
- Q. H. Choi and T. Jung, An application of a variational reduction method to a nonlinear wave equation, J. Differential Equations, 117, 390-410 (1995). https://doi.org/10.1006/jdeq.1995.1058
- T. Jung and Q. H. Choi, An application of category theory to the nonlinear wave equation with jumping nonlinearity, Honam Mathematical Journal, 26 (December 2004), no. 4, 589-608 .
- Q. H. Choi and T. Jung, Multiple periodic solutions of a semilinear wave equation at double external resonances, Communications in Applied Analysis 3 (1999), no. 1, 73-84.
- Q. H. Choi and T. Jung, Multiplicity results for nonlinear wave equations with nonlinearities crossing eigenvalues, Hokkaido Mathematical Journal 24 (1995), no. 1, 53-62. https://doi.org/10.14492/hokmj/1380892535
- A. C. Lazer and P.J. McKenna, Some multiplicity results for a class of semilinear elliptic and parabolic boundary value problems, J. Math. Anal. Appl. 107 (1985), 371-395. https://doi.org/10.1016/0022-247X(85)90320-8
- A. C. Lazer and P. J. McKenna, Global bifurcation and a theorem of Tarantello, J. Math. Anal. Appl, 181 (1994), 648-655. https://doi.org/10.1006/jmaa.1994.1049
- P. J. McKenna and W. Walter, Nonlinear oscillations in a suspension bridge, Archive for Rational Mechanics and Analysis 98 (1987), no. 2, 167-177 .
- P. J. McKenna and W. Walter, On the multiplicity of the solution set of some nonlinear boundary value problems, Nonlinear Analysis TMA 8 (1984), no. 8, 893-907. https://doi.org/10.1016/0362-546X(84)90110-X
- A. M. Micheletti and A. Pistoia, Multiplicity results for a fourth-order semilinear elliptic problem, Nonlinear Analysis TMA, 31 (1998), 895-908. https://doi.org/10.1016/S0362-546X(97)00446-X
- A. M. Micheletti and A. Pistoia, Nontrivial solutions for some fourth order semilinear elliptic problems, Nonlinear Analysis, 34 (1998), 509-523. https://doi.org/10.1016/S0362-546X(97)00596-8
- J. T. Schwartz , Nonlinear functional analysis, Gordon and Breach, New York, (1969).
- P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, C.B.M.S. Reg. Conf. Ser. in Math. 6, American Mathematical Society, Providence, R1, (1986).
- G. Tarantello , A note on a semilinear elliptic problem, Diff. Integ. Equations. 5(1992), 561-565.