• Title/Summary/Keyword: oxide heterostructure

Search Result 34, Processing Time 0.027 seconds

Fabrication and Electrical Transport Characteristics of All-Perovskite Oxide DyMnO3/Nb-1.0 wt% Doped SrTiO3 Heterostructures

  • Wang, Wei Tian
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.333-337
    • /
    • 2020
  • Orthorhombic DyMnO3 films are fabricated epitaxially on Nb-1.0 wt%-doped SrTiO3 single crystal substrates using pulsed laser deposition technique. The structure of the deposited DyMnO3 films is studied by X-ray diffraction, and the epitaxial relationship between the film and the substrate is determined. The electrical transport properties reveal the diodelike rectifying behaviors in the all-perovskite oxide junctions over a wide temperature range (100 ~ 340 K). The forward current is exponentially related to the forward bias voltage, and the extracted ideality factors show distinct transport mechanisms in high and low positive regions. The leakage current increases with increasing reverse bias voltage, and the breakdown voltage decreases with decrease temperature, a consequence of tunneling effects because the leakage current at low temperature is larger than that at high temperature. The determined built-in potentials are 0.37 V in the low bias region, and 0.11 V in the high bias region, respectively. The results show the importance of temperature and applied bias in determining the electrical transport characteristics of all-perovskite oxide heterostructures.

Electro-optical characterization of heterostructure organic electroluminescent devices (2층 구조 유기 박막 EL 소자의 전기-광학적특성)

  • Kim, Min-Soo;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.10-15
    • /
    • 1995
  • Organic thin film electroluminescent(EL) cells were fabricated. Their output characteristics and luminance versus voltage characteristics were measured with different work function metal electrodes. The EL structure was Indium-Tin-Oxide(ITO)/hole transport layer/emission layer(electron transport layer)/metal electrode. PMMA+TPD(0.5 wt%), MC homopolymer+TPD(0.005 wt%) and (MC/MMA) copolymer+TPD(0.005 wt%) were used as hole transport layer. Ca, Mg, Mg:Ag(10:l) and Al were used as metal electrode. I-V output showed exponential feature, and the threshold voltage of 5 volts and the luminance of over 700 $Cd/m^{2}$ at 10 volts were observed.

  • PDF

Self Charging Sulfanilic Acid Azocromotrop/Reduced Graphene Oxide Decorated Nickel Oxide/Iron Oxide Solar Supercapacitor for Energy Storage Application

  • Saha, Sanjit;Jana, Milan;Samanta, Pranab;Murmu, Naresh Chandra;Lee, Joong Hee;Kuila, Tapas
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.179-185
    • /
    • 2016
  • A self-charging supercapacitor is constructed through simple integration of the energy storage and photo exited materials at the photo electrode. The large band gap of $NiO/Fe_3O_4$ heterostructure generates photo electron at the photo electrode and store the charges through redox mechanism at the counter electrode. Sulfanilic acid azocromotrop/reduced graphene oxide layer at the photo electrode trapped the photo generated hole and store the charge by forming double layer. The solar supercapacitor device is charged within 400 s up to 0.5 V and exhibited a high specific capacitance of ~908 F/g against 1.5 A/g load. The solar illuminated supercapacitor shows a high energy and power density of 33.4 Wh/kg and 385 W/kg along with a very low relaxation time of ~15 ms ensuring the utility of the self charging device in the various field of energy storage and optoelectronic application.

Nanoscale Characterization of a Heterostructure Interface Properties for High-Energy All-Solid-State Electrolytes (고에너지 전고체 전해질을 위한 나노스케일 이종구조 계면 특성)

  • Sung Won Hwang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.28-32
    • /
    • 2023
  • Recently, the use of stable lithium nanostructures as substrates and electrodes for secondary batteries can be a fundamental alternative to the development of next-generation system semiconductor devices. However, lithium structures pose safety concerns by severely limiting battery life due to the growth of Li dendrites during rapid charge/discharge cycles. Also, enabling long cyclability of high-voltage oxide cathodes is a persistent challenge for all-solid-state batteries, largely because of their poor interfacial stabilities against oxide solid electrolytes. For the development of next-generation system semiconductor devices, solid electrolyte nanostructures, which are used in high-density micro-energy storage devices and avoid the instability of liquid electrolytes, can be promising alternatives for next-generation batteries. Nevertheless, poor lithium ion conductivity and structural defects at room temperature have been pointed out as limitations. In this study, a low-dimensional Graphene Oxide (GO) structure was applied to demonstrate stable operation characteristics based on Li+ ion conductivity and excellent electrochemical performance. The low-dimensional structure of GO-based solid electrolytes can provide an important strategy for stable scalable solid-state power system semiconductor applications at room temperature. The device using uncoated bare NCA delivers a low capacity of 89 mA h g-1, while the cell using GO-coated NCA delivers a high capacity of 158 mA h g−1 and a low polarization. A full Li GO-based device was fabricated to demonstrate the practicality of the modified Li structure using the Li-GO heterointerface. This study promises that the lowdimensional structure of Li-GO can be an effective approach for the stabilization of solid-state power system semiconductor architectures.

  • PDF

Forming Gas Post Metallization Annealing of Recessed AlGaN/GaN-on-Si MOSHFET

  • Lee, Jung-Yeon;Park, Bong-Ryeol;Lee, Jae-Gil;Lim, Jongtae;Cha, Ho-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.1
    • /
    • pp.16-21
    • /
    • 2015
  • In this study, the effects of forming gas post metallization annealing (PMA) on recessed AlGaN/GaN-on-Si MOSHFET were investigated. The device employed an ICPCVD $SiO_2$ film as a gate oxide layer on which a Ni/Au gate was evaporated. The PMA process was carried out at $350^{\circ}C$ in forming gas ambient. It was found that the device instability was improved with significant reduction in interface trap density by forming gas PMA.

3D Hierarchical Heterostructure of TiO2 Nanorod/Carbon Layer/NiMn-Layered Double Hydroxide Nanosheet

  • Zhao, Wei;Jung, Hyunsung
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.365-371
    • /
    • 2018
  • 1D core-shell nanostructures have attracted great attention due to their enhanced physical and chemical properties. Specifically, oriented single-crystalline $TiO_2$ nanorods or nanowires on a transparent conductive substrate would be more desirable as the building core backbone. However, a facile approach to produce such structure-based hybrids is highly demanded. In this study, a three-step hydrothermal method was developed to grow NiMn-layered double hydroxide-decorated $TiO_2$/carbon core-shell nanorod arrays on transparent conductive fluorine-doped tin oxide (FTO) substrates. XRD, SEM, TEM, XPS and Raman were used to analyze the obtained samples. The in-situ fabricated hybrid nanostructured materials are expected to be applicable for photoelectrode working in water splitting.

Reliable charge retention in nonvolatile memories with van der Waals heterostructures

  • Qiu, Dongri;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.282.1-282.1
    • /
    • 2016
  • The remarkable physical properties of two-dimensional (2D) semiconducting materials such as molybdenum disulfide ($MoS_2$) and tungsten disulfide ($WS_2$) etc. have attracted considerable attentions for future high-performance electronic and optoelectronic devices. The ongoing studies of $MoS_2$ based nonvolatile memories have been demonstrated by worldwide researchers. The opening hysteresis in transfer characteristics have been revealed by different charge confining layer, for instance, few-layer graphene, $MoS_2$, metallic nanocrystal, hafnium oxide, and guanine. However, limited works built their nonvolatile memories using entirely of assembled 2D crystals. This is important in aspect view of large-scale manufacture and vertical integration for future memory device engineering. We report $WS_2$ based nonvolatile memories utilizing functional van der Waals heterostructure in which multi-layered graphene is encapsulated between $SiO_2$ and hexagonal boron nitride (hBN). We experimentally observed that, large memory window (20 V) allows to reveal high on-/off-state ratio (>$10^3$). Moreover, the devices manifest perfect retention of 13% charge loss after 10 years due to large graphene/hBN barrier height. Interestingly, the performance of our memories is drastically better than ever published work related to $MoS_2$ and black phosphorus flash memory technology.

  • PDF

DC Characteristics of P-Channel Metal-Oxide-Semiconductor Field Effect Transistors with $Si_{0.88}Ge_{0.12}(C)$ Heterostructure Channel

  • Choi, Sang-Sik;Yang, Hyun-Duk;Han, Tae-Hyun;Cho, Deok-Ho;Kim, Jea-Yeon;Shim, Kyu-Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.2
    • /
    • pp.106-113
    • /
    • 2006
  • Electrical properties of $Si_{0.88}Ge_{0.12}(C)$ p-MOSFETs have been exploited in an effort to investigate $Si_{0.88}Ge_{0.12}(C)$ channel structures designed especially to suppress diffusion of dopants during epitaxial growth and subsequent fabrication processes. The incorporation of 0.1 percent of carbon in $Si_{0.88}Ge_{0.12}$ channel layer could accomodate stress due to lattice mismatch and adjust bandgap energy slightly, but resulted in deteriorated current-voltage properties in a broad range of operation conditions with depressed gain, high subthreshold current level and many weak breakdown electric field in gateoxide. $Si_{0.88}Ge_{0.12}(C)$ channel structures with boron delta-doping represented increased conductance and feasible use of modulation doped device of $Si_{0.88}Ge_{0.12}(C)$ heterostructures.

Formation of Copper Electroplated Electrode Patterning Using Screen Printing for Silicon Solar Cell Transparent Electrode (실리콘 태양전지 투명전극용 스크린 프린팅을 이용한 구리 도금 전극 패터닝 형성)

  • Kim, Gyeong Min;Cho, Young Joon;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.228-232
    • /
    • 2019
  • Copper electroplating and electrode patterning using a screen printer are applied instead of lithography for heterostructure with intrinsic thin layer(HIT) silicon solar cells. Samples are patterned on an indium tin oxide(ITO) layer using polymer resist printing. After polymer resist patterning, a Ni seed layer is deposited by sputtering. A Cu electrode is electroplated in a Cu bath consisting of $Cu_2SO_4$ and $H_2SO_4$ at a current density of $10mA/cm^2$. Copper electroplating electrodes using a screen printer are successfully implemented to a line width of about $80{\mu}m$. The contact resistance of the copper electrode is $0.89m{\Omega}{\cdot}cm^2$, measured using the transmission line method(TLM), and the sheet resistance of the copper electrode and ITO are $1{\Omega}/{\square}$ and $40{\Omega}/{\square}$, respectively. In this paper, a screen printer is used to form a solar cell electrode pattern, and a copper electrode is formed by electroplating instead of using a silver electrode to fabricate an efficient solar cell electrode at low cost.

Dependence of LaAlO3/SrTiO3 Interfacial Conductivity on the Thickness of LaAlO3 Layer Investigated by Current-voltage Characteristics (LaAlO3 두께에 따른 LaAlO3/SrTiO3 계면에서의 전류-전압 특성을 이용한 전도성 변화 연구)

  • Moon, Seon-Young;Baek, Seung-Hyub;Kang, Chong-Yun;Choi, Ji-Won;Choi, Heon-Jin;Kim, Jin-Sang;Jang, Ho-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.616-619
    • /
    • 2012
  • Oxides possess several interesting properties, such as ferroelectricity, magnetism, superconductivity, and multiferroic behavior, which can effectively be used oxide electronics based on epitaxially grown heterostructures. The microscopic properties of oxide interfaces may have a strong impact on the electrical transport properties of these heterostructures. It was recently demonstrated that high electrical conductivity and mobility can be achieved in the system of an ultrathin $LaAlO_3$ film deposited on a $TiO_2$-terminated $SrTiO_3$ substrate, which was a remarkable result because the conducting layer was at the interface between two insulators. In this study, we observe that the current-voltage characteristics exhibit $LaAlO_3$ thickness dependence of electrical conductivity in $TiO_2$-terminated $SrTiO_3$. We find that the $LaAlO_3$ layers with a thickness of up 3 unit cells, result in highly insulating interfaces, whereas those with thickness of 4 unit cells and above result in conducting interfaces.