Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.7.333

Fabrication and Electrical Transport Characteristics of All-Perovskite Oxide DyMnO3/Nb-1.0 wt% Doped SrTiO3 Heterostructures  

Wang, Wei Tian (Institute of Opto-Electronic Information Science and Technology, Yantai University)
Publication Information
Korean Journal of Materials Research / v.30, no.7, 2020 , pp. 333-337 More about this Journal
Abstract
Orthorhombic DyMnO3 films are fabricated epitaxially on Nb-1.0 wt%-doped SrTiO3 single crystal substrates using pulsed laser deposition technique. The structure of the deposited DyMnO3 films is studied by X-ray diffraction, and the epitaxial relationship between the film and the substrate is determined. The electrical transport properties reveal the diodelike rectifying behaviors in the all-perovskite oxide junctions over a wide temperature range (100 ~ 340 K). The forward current is exponentially related to the forward bias voltage, and the extracted ideality factors show distinct transport mechanisms in high and low positive regions. The leakage current increases with increasing reverse bias voltage, and the breakdown voltage decreases with decrease temperature, a consequence of tunneling effects because the leakage current at low temperature is larger than that at high temperature. The determined built-in potentials are 0.37 V in the low bias region, and 0.11 V in the high bias region, respectively. The results show the importance of temperature and applied bias in determining the electrical transport characteristics of all-perovskite oxide heterostructures.
Keywords
perovskite; heterostructure; electrical transport; diodelike;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 U. Dash and C.-U. Jung, J. Magn., 23, 345 (2018).   DOI
2 S. Harikrishnan, S. Rossler, C. M. N. Kumar, H. L. Bhat, U. K. Rossler, S. Wirth, F. Steglich and S. Elizabeth, J. Phys.: Condens. Matter., 21, 096002 (2009).   DOI
3 D. Ito, N. Fujimura, T. Yoshimura and T. Ito, J. Appl. Phys., 93, 5563 (2003).   DOI
4 S. Jandl, S. Mansouri, A. A. Mukhin, V. Y. Ivanov, A. Balbashov, M. M. Gospodino, V. Nekvasil and M. Orlita, J. Magn. Magn. Mater., 323, 1104 (2011).   DOI
5 V. Y. Ivanov, A. A. Mukhin, A. S. Prokhorov, A. M. Balbashov and L. D. Iskhakova, Phys. Solid State, 48, 1726 (2006).   DOI
6 S. Remsen, B. Dabrowski, O. Chmaissem, J. Mais and A. Szewczyk, J. Solid State Chem., 184, 2306 (2011).   DOI
7 K. Yadagiri, R. Nithya, N. Shukla and A.T. Satya, J. Alloys Compd., 695, 2959 (2017).   DOI
8 A. A. Bosak, C. Dubourdieu, J. -P. Senateur , O. Y. Gorbenko and A. R. Kaul, Cryst. Eng., 5, 355 (2002).   DOI
9 C. N. R. Rao and A. K. Cheetham, Science, 272, 369 (1996).   DOI
10 R. Mahendiran, S. K. Tiwary, A.K. Raychadhuri, T. V. Ramakrisnan, R. Mahesh, N. Raganvittal and C. N. R. Rao, Phys. Rev. B: Condens. Matter Mater. Phys., 53, 3348 (1996).   DOI
11 K. Chanara, T. Ohno, M. Kasai and Y. Kozono, Appl. Phys. Lett., 63, 1990 (1993).   DOI
12 R. Von Helmolt, J. Wecker, B. Holzapfel, L. Schultz and K.Samwer, Phys. Rev. Lett., 71, 2331 (1994).   DOI
13 M. Sugiura, K. Uragou, M. Noda, M. Tachiki and T. Kobayashi, Jpn. J. Appl. Phys., 38, 2675 (1999).   DOI
14 Y. Watanabe, Phys. Rev. B: Condens. Matter Mater. Phys., 57, R5563 (1998).   DOI
15 Y. M. Cui, L. W. Zhang, C. C. Wang, G. L. Xie, C. P. Chen and B. S. Cao, Appl. Phys. Lett., 86, 203501 (2005).   DOI
16 W. T. Wang, Korean J. Mater. Res., 29, 753 (2019).   DOI
17 F. Y. Bruno, J. Garcia-Barriocanal, M. Torija, A. Rivera, Z. Sefrioui, C. Leighton, C. Leon and J. Santamaria, Appl. Phys. Lett., 92, 082106 (2008).   DOI
18 Y. Z. Chen, J. R. Sun, Y. W. Xie, D. J. Wang, W. M. Lu, S. Liang and B.G. Shen, Appl. Phys. Lett., 90, 143508 (2007).   DOI
19 J. H. Werner and H. H. Guttler, J. Appl. Phys., 69, 1522 (1991).   DOI
20 H. C. Casey, Jr., J. Muth, S. Krishnankutty and J. M. Zavada, Appl. Phys. Lett., 68, 2867 (1996).   DOI
21 W. Wang, D. Yuan, Y. Sun and Y. Sun, J. Appl. Phys., 106, 024106 (2009).   DOI