DOI QR코드

DOI QR Code

3D Hierarchical Heterostructure of TiO2 Nanorod/Carbon Layer/NiMn-Layered Double Hydroxide Nanosheet

  • Zhao, Wei (Electronic Convergence Materials Division, Nano Convergence Materials Center, Korea Institute of Ceramic Engineering & Technology (KICET)) ;
  • Jung, Hyunsung (Electronic Convergence Materials Division, Nano Convergence Materials Center, Korea Institute of Ceramic Engineering & Technology (KICET))
  • 투고 : 2018.10.02
  • 심사 : 2018.12.10
  • 발행 : 2018.12.31

초록

1D core-shell nanostructures have attracted great attention due to their enhanced physical and chemical properties. Specifically, oriented single-crystalline $TiO_2$ nanorods or nanowires on a transparent conductive substrate would be more desirable as the building core backbone. However, a facile approach to produce such structure-based hybrids is highly demanded. In this study, a three-step hydrothermal method was developed to grow NiMn-layered double hydroxide-decorated $TiO_2$/carbon core-shell nanorod arrays on transparent conductive fluorine-doped tin oxide (FTO) substrates. XRD, SEM, TEM, XPS and Raman were used to analyze the obtained samples. The in-situ fabricated hybrid nanostructured materials are expected to be applicable for photoelectrode working in water splitting.

키워드

PMGHBJ_2018_v51n6_365_f0001.png 이미지

Fig. 1 Schematic illustration for the fabrication of TiO2/C/NiMn-LDH core-double-shell NRAs.

PMGHBJ_2018_v51n6_365_f0002.png 이미지

Fig. 2 SEM images of (a) TiO2 NRAs, (b) TiO2/C core-shell NRAs. (inset: (I) side view, and (II) enlarged top view of TiO2 NRAs. The scale bars for (a), (b) and the insets are 10 μm, 10 μm, 5 μm, and 1 μm, respectively).

PMGHBJ_2018_v51n6_365_f0003.png 이미지

Fig. 3 XRD patterns of TiO2 NRAs, and carbon-coated TiO2 NRAs.

PMGHBJ_2018_v51n6_365_f0004.png 이미지

Fig. 4 TEM and HR-TEM images of (a, b) TiO2 NRs, and (d, e) TiO2/C core-shell NRs, (c) line profile plots for circled area (I) and (II) in Fig. 4(b), (f) the HAAD-STEM image and elemental mapping image of an individual NR of a TiO2/C NR.

PMGHBJ_2018_v51n6_365_f0005.png 이미지

Fig. 6 SEM images of (a) NiMn-LDH-decorated TiO2 NR arrays, and (b) NiMn-LDH-decorated TiO2/C core-shell NR arrays on FTO glass. (insets: enlarged view; the scale bars for (a), (b) and their insets are 1 μm, 1 μm, 100 nm, and 100 nm, respectively)

PMGHBJ_2018_v51n6_365_f0006.png 이미지

Fig. 7 XRD patterns of NiMn-LDH nanosheetsdecorated TiO2 NRAs and TiO2/C core-shell NRAs.

PMGHBJ_2018_v51n6_365_f0007.png 이미지

Fig. 5 (a) XPS spectra and (b) Raman spectra of the obtained TiO2 NRAs and TiO2/C core-shell NRAs.

참고문헌

  1. X. Long, J. Li, S. Xiao, K. Yan, Z. Wang, H. Chen, and S. Yang, Angew. Chem. Int. Ed., 2014, 53, 7584-7588. https://doi.org/10.1002/anie.201402822
  2. J. Zhang, X. Jin, P. I. Morales-Guzman, X. Yu, H. Liu, H. Zhang, L. Razzari, and J. P. Claverie, ACS Nano, 2016, 10, 4496-4503. https://doi.org/10.1021/acsnano.6b00263
  3. P. Zhang, J. J. Zhang, and J. L. Gong, Chem. Soc. Rev., 2014, 43, 4395-4422. https://doi.org/10.1039/C3CS60438A
  4. Y. C. Pu, G. Wang, K. D. Chang, Y. Ling, Y. Ka. Lin, B. C. Fitzmorris, C. M. Liu, X. Lu, Y. Tong, J. Z. Zhang, Y. J. Hsu, and Y. Li, Nano Lett., 2013, 13, 3817-3823. https://doi.org/10.1021/nl4018385
  5. X. Chen, S. Shen, and L. Guo, Chem. Rev. 2010, 110, 6503-6570. https://doi.org/10.1021/cr1001645
  6. C. T. Dinh, and T. D. Nguyen, and F. Kleitz, ACS Nano 2009, 3, 3737-3743. https://doi.org/10.1021/nn900940p
  7. Z. Wu, Y. Wang, L. Sun, Y. Mao, M. Wang, and C. Lin, J. Mater. Chem. A, 2014, 2, 8223-8229. https://doi.org/10.1039/c4ta00850b
  8. X. Zhang, T. Zhang, J. Ng, and D. D. Sun, Adv. Funct. Mater. 2009, 19, 3731-3736. https://doi.org/10.1002/adfm.200901435
  9. H. J. Yun, H. Lee, J. B. Joo, W. Kim, and J. Yi, J. Phys. Chem. C, 2009, 113, 3050-3055. https://doi.org/10.1021/jp808604t
  10. J. Su, and L. Guo, RSC Advances, 2015, 5, 53012-53018. https://doi.org/10.1039/C5RA06149K
  11. J. Fan, L. Zhao, J. Yu, and G. Liu, Nanoscale, 2012, 4, 6597-6603. https://doi.org/10.1039/c2nr32048g
  12. C. P. Sajan, S. Wageh, A. A. Al-Ghamdi, J. Yu, and S. Cao, Nano Res., 2016, 9, 3-27. https://doi.org/10.1007/s12274-015-0919-3
  13. K. Zhao, S. Zhao, J. Qi, H. Yin, C. Gao, A. M. Khattak, Y. Wu, A. Iqbal, L. Weu, Y. Gao, R. Yu, and Z. Tang, Inorg. Chem. Front., 2016, 3, 488-493. https://doi.org/10.1039/C5QI00284B
  14. T. D. Nguyen-Phan, E. S. Oh, M. Chhowalla, T. Asefa, and E. W. Shin, J. Mater. Chem. A, 2013, 1, 7690-7701. https://doi.org/10.1039/c3ta11383c
  15. W. Dong, Y. Sun, C. W. Lee, W. Hua, X, Lu, Y. Shi, S. Zhang, J. Chen, and D. Zhao, J. Am. Chem. Soc., 2007, 129, 13894-13904. https://doi.org/10.1021/ja073804o
  16. M. Altomare, M. Pozzi, M. Allieta, L. G. Bettini, and E. Selli, Appl. Catal. B, 2013, 136, 81-88.
  17. L. Chen, Y. Zhou, H. Dai, Z. D. Li, T. Yu, J. G. Liu, and Z. G. Zou, J. Mater. Chem. A, 2013, 1, 11790-11794. https://doi.org/10.1039/c3ta12511d
  18. J. Y. Huang, Y. K. Lai, F. Pan, L. Yang, H. Wang, K. Q. Zhang, H. Fuchs, and L. F. Chi, Small, 2014, 10, 4865-4875. https://doi.org/10.1002/smll.201401024
  19. A. Dessombz, C. R. Pasquier, P. Davidson, and C. Chaneac, J. Phys. Chem. C, 2010, 114, 19799-19802. https://doi.org/10.1021/jp1063275
  20. J. Wang, T. Zhang, D. Wang, R. Pan, Q. Wang, and H. Xia, J. Alloys Compd., 2013, 551, 82-87. https://doi.org/10.1016/j.jallcom.2012.09.113
  21. J. Liu, J. Jiang, C. Cheng, H. Li, J Zhang, H. Gong, and H. J. Fan, Adv. Mater., 2011, 23, 2076-2081. https://doi.org/10.1002/adma.201100058
  22. X. Xia, Y. Zhang, D. Chao, C. Guan, Y. Zhang, L. Li, X. Ge, I. M. Bacho, J. Tu, and H. J. Fan, Nanoscale, 2014, 6, 5008-5048. https://doi.org/10.1039/C4NR00024B
  23. K. Wang, J. Chen, W. Zhou, Y. Zhang, Y. Yan, J. Pern, and A. Mascarenhas, Adv. Mater., 2008, 20, 3248-3253. https://doi.org/10.1002/adma.200800145
  24. F. Ning, M. Shao, S. Xu, Y. Fu, R. Zhang, M. Wei, D. G. Evans, and X. Duan, Energy & Environ. Sci., 2016, 9, 2633-2643. https://doi.org/10.1039/C6EE01092J
  25. A. Pottier, C. Chaneac, E. Tronc, L. Mazrolles, and J. P. Jolivet, J. Mater. Chem., 2001, 11, 1116-1121. https://doi.org/10.1039/b100435m
  26. Y. Kim, H. M. Hwang, L. Wang, I. Kim, Y. Yoon, and H. Lee, Sci. Rep., 2016, 6, 25212 (1-10). https://doi.org/10.1038/srep25212
  27. J. Zhao, J. Chen, S. Xu, M. Shao, Q. Zhang, F. Wei, J. Ma, M. Wei, D. G. Evans, and X. Duan, Adv. Funct. Mater., 2014, 24, 2938-2946. https://doi.org/10.1002/adfm.201303638