Browse > Article
http://dx.doi.org/10.5695/JKISE.2018.51.6.365

3D Hierarchical Heterostructure of TiO2 Nanorod/Carbon Layer/NiMn-Layered Double Hydroxide Nanosheet  

Zhao, Wei (Electronic Convergence Materials Division, Nano Convergence Materials Center, Korea Institute of Ceramic Engineering & Technology (KICET))
Jung, Hyunsung (Electronic Convergence Materials Division, Nano Convergence Materials Center, Korea Institute of Ceramic Engineering & Technology (KICET))
Publication Information
Journal of the Korean institute of surface engineering / v.51, no.6, 2018 , pp. 365-371 More about this Journal
Abstract
1D core-shell nanostructures have attracted great attention due to their enhanced physical and chemical properties. Specifically, oriented single-crystalline $TiO_2$ nanorods or nanowires on a transparent conductive substrate would be more desirable as the building core backbone. However, a facile approach to produce such structure-based hybrids is highly demanded. In this study, a three-step hydrothermal method was developed to grow NiMn-layered double hydroxide-decorated $TiO_2$/carbon core-shell nanorod arrays on transparent conductive fluorine-doped tin oxide (FTO) substrates. XRD, SEM, TEM, XPS and Raman were used to analyze the obtained samples. The in-situ fabricated hybrid nanostructured materials are expected to be applicable for photoelectrode working in water splitting.
Keywords
$TiO_2$; Layered double hydroxide; Core/Shell; Nanowires; Nanosheets;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. J. Yun, H. Lee, J. B. Joo, W. Kim, and J. Yi, J. Phys. Chem. C, 2009, 113, 3050-3055.   DOI
2 J. Su, and L. Guo, RSC Advances, 2015, 5, 53012-53018.   DOI
3 J. Fan, L. Zhao, J. Yu, and G. Liu, Nanoscale, 2012, 4, 6597-6603.   DOI
4 C. P. Sajan, S. Wageh, A. A. Al-Ghamdi, J. Yu, and S. Cao, Nano Res., 2016, 9, 3-27.   DOI
5 K. Zhao, S. Zhao, J. Qi, H. Yin, C. Gao, A. M. Khattak, Y. Wu, A. Iqbal, L. Weu, Y. Gao, R. Yu, and Z. Tang, Inorg. Chem. Front., 2016, 3, 488-493.   DOI
6 T. D. Nguyen-Phan, E. S. Oh, M. Chhowalla, T. Asefa, and E. W. Shin, J. Mater. Chem. A, 2013, 1, 7690-7701.   DOI
7 W. Dong, Y. Sun, C. W. Lee, W. Hua, X, Lu, Y. Shi, S. Zhang, J. Chen, and D. Zhao, J. Am. Chem. Soc., 2007, 129, 13894-13904.   DOI
8 M. Altomare, M. Pozzi, M. Allieta, L. G. Bettini, and E. Selli, Appl. Catal. B, 2013, 136, 81-88.
9 L. Chen, Y. Zhou, H. Dai, Z. D. Li, T. Yu, J. G. Liu, and Z. G. Zou, J. Mater. Chem. A, 2013, 1, 11790-11794.   DOI
10 J. Y. Huang, Y. K. Lai, F. Pan, L. Yang, H. Wang, K. Q. Zhang, H. Fuchs, and L. F. Chi, Small, 2014, 10, 4865-4875.   DOI
11 A. Dessombz, C. R. Pasquier, P. Davidson, and C. Chaneac, J. Phys. Chem. C, 2010, 114, 19799-19802.   DOI
12 J. Wang, T. Zhang, D. Wang, R. Pan, Q. Wang, and H. Xia, J. Alloys Compd., 2013, 551, 82-87.   DOI
13 J. Liu, J. Jiang, C. Cheng, H. Li, J Zhang, H. Gong, and H. J. Fan, Adv. Mater., 2011, 23, 2076-2081.   DOI
14 X. Xia, Y. Zhang, D. Chao, C. Guan, Y. Zhang, L. Li, X. Ge, I. M. Bacho, J. Tu, and H. J. Fan, Nanoscale, 2014, 6, 5008-5048.   DOI
15 K. Wang, J. Chen, W. Zhou, Y. Zhang, Y. Yan, J. Pern, and A. Mascarenhas, Adv. Mater., 2008, 20, 3248-3253.   DOI
16 F. Ning, M. Shao, S. Xu, Y. Fu, R. Zhang, M. Wei, D. G. Evans, and X. Duan, Energy & Environ. Sci., 2016, 9, 2633-2643.   DOI
17 A. Pottier, C. Chaneac, E. Tronc, L. Mazrolles, and J. P. Jolivet, J. Mater. Chem., 2001, 11, 1116-1121.   DOI
18 Y. Kim, H. M. Hwang, L. Wang, I. Kim, Y. Yoon, and H. Lee, Sci. Rep., 2016, 6, 25212 (1-10).   DOI
19 J. Zhao, J. Chen, S. Xu, M. Shao, Q. Zhang, F. Wei, J. Ma, M. Wei, D. G. Evans, and X. Duan, Adv. Funct. Mater., 2014, 24, 2938-2946.   DOI
20 X. Long, J. Li, S. Xiao, K. Yan, Z. Wang, H. Chen, and S. Yang, Angew. Chem. Int. Ed., 2014, 53, 7584-7588.   DOI
21 J. Zhang, X. Jin, P. I. Morales-Guzman, X. Yu, H. Liu, H. Zhang, L. Razzari, and J. P. Claverie, ACS Nano, 2016, 10, 4496-4503.   DOI
22 P. Zhang, J. J. Zhang, and J. L. Gong, Chem. Soc. Rev., 2014, 43, 4395-4422.   DOI
23 Y. C. Pu, G. Wang, K. D. Chang, Y. Ling, Y. Ka. Lin, B. C. Fitzmorris, C. M. Liu, X. Lu, Y. Tong, J. Z. Zhang, Y. J. Hsu, and Y. Li, Nano Lett., 2013, 13, 3817-3823.   DOI
24 X. Zhang, T. Zhang, J. Ng, and D. D. Sun, Adv. Funct. Mater. 2009, 19, 3731-3736.   DOI
25 X. Chen, S. Shen, and L. Guo, Chem. Rev. 2010, 110, 6503-6570.   DOI
26 C. T. Dinh, and T. D. Nguyen, and F. Kleitz, ACS Nano 2009, 3, 3737-3743.   DOI
27 Z. Wu, Y. Wang, L. Sun, Y. Mao, M. Wang, and C. Lin, J. Mater. Chem. A, 2014, 2, 8223-8229.   DOI