• 제목/요약/키워드: operator inequalities

검색결과 135건 처리시간 0.023초

Operator Inequalities Related to Angular Distances

  • Taba, Davood Afkhami;Dehghan, Hossein
    • Kyungpook Mathematical Journal
    • /
    • 제57권4호
    • /
    • pp.623-630
    • /
    • 2017
  • For any nonzero elements x, y in a normed space X, the angular and skew-angular distance is respectively defined by ${\alpha}[x,y]={\parallel}{\frac{x}{{\parallel}x{\parallel}}}-{\frac{y}{{\parallel}y{\parallel}}}{\parallel}$ and ${\beta}[x,y]={\parallel}{\frac{x}{{\parallel}y{\parallel}}}-{\frac{y}{{\parallel}x{\parallel}}}{\parallel}$. Also inequality ${\alpha}{\leq}{\beta}$ characterizes inner product spaces. Operator version of ${\alpha}$ has been studied by $ Pe{\check{c}}ari{\acute{c}}$, $ Raji{\acute{c}}$, and Saito, Tominaga, and Zou et al. In this paper, we study the operator version of ${\beta}$ by using Douglas' lemma. We also prove that the operator version of inequality ${\alpha}{\leq}{\beta}$ holds for commutating normal operators. Some examples are presented to show essentiality of these conditions.

HALPERN TSENG'S EXTRAGRADIENT METHODS FOR SOLVING VARIATIONAL INEQUALITIES INVOLVING SEMISTRICTLY QUASIMONOTONE OPERATOR

  • Wairojjana, Nopparat;Pakkaranang, Nuttapol
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권1호
    • /
    • pp.121-140
    • /
    • 2022
  • In this paper, we study the strong convergence of new methods for solving classical variational inequalities problems involving semistrictly quasimonotone and Lipschitz-continuous operators in a real Hilbert space. Three proposed methods are based on Tseng's extragradient method and use a simple self-adaptive step size rule that is independent of the Lipschitz constant. The step size rule is built around two techniques: the monotone and the non-monotone step size rule. We establish strong convergence theorems for the proposed methods that do not require any additional projections or knowledge of an involved operator's Lipschitz constant. Finally, we present some numerical experiments that demonstrate the efficiency and advantages of the proposed methods.

INEQUALITIES FOR B-OPERATOR

  • Akhter, Rubia;Gulzar, M.H.
    • Korean Journal of Mathematics
    • /
    • 제30권3호
    • /
    • pp.525-532
    • /
    • 2022
  • Let 𝓟n denote the space of all complex polynomials $P(z)=\sum\limits_{j=0}^{n}{\alpha}_jz^j$ of degree n. Let P ∈ 𝓟n, for any complex number α, DαP(z) = nP(z) + (α - z)P'(z), denote the polar derivative of the polynomial P(z) with respect to α and Bn denote a family of operators that maps 𝓟n into itself. In this paper, we combine the operators B and Dα and establish certain operator preserving inequalities concerning polynomials, from which a variety of interesting results can be obtained as special cases.

RESOLVENT DYNAMICAL SYSTEMS FOR MIXED VARIATIONAL INEQUALITIES

  • Muhammad, Aslan-Noor
    • Journal of applied mathematics & informatics
    • /
    • 제9권1호
    • /
    • pp.15-26
    • /
    • 2002
  • In this paper, we suggest and analyze a class of resolvent dynamical systems associated with mixed variational inequalities. We study the globally asymptotic stability of the solution of the resolvent dynamical systems for the pseudomonotone operators. We also discuss some special cases, which can be obtained from our main results.

PERTURBED PROXIMAL POINT ALGORITHMS FOR GENERALIZED MIXED VARIATIONAL INEQUALITIES

  • Jeong, Jae-Ug
    • East Asian mathematical journal
    • /
    • 제18권1호
    • /
    • pp.95-109
    • /
    • 2002
  • In this paper, we study a class of variational inequalities, which is called the generalized set-valued mixed variational inequality. By using the properties of the resolvent operator associated with a maximal monotone mapping in Hilbert spaces, we have established an existence theorem of solutions for generalized set-valued mixed variational inequalities, suggesting a new iterative algorithm and a perturbed proximal point algorithm for finding approximate solutions which strongly converge to the exact solution of the generalized set-valued mixed variational inequalities.

  • PDF

GENERALIZATION OF THE BUZANO'S INEQUALITY AND NUMERICAL RADIUS INEQUALITIES

  • VUK STOJILJKOVIC;MEHMET GURDAL
    • Journal of Applied and Pure Mathematics
    • /
    • 제6권3_4호
    • /
    • pp.191-200
    • /
    • 2024
  • Motivated by the previously reported results, this work attempts to provide fresh refinements to both vector and numerical radius inequalities by providing a refinement to the well known Buzano's inequality which as a consequence yielded another refinement of the Cauchy-Schwartz (CS) inequality. Utilizing the new refinements of the Buzano's and Cauchy-Schwartz inequalities, we proceed to obtain various vector and numerical radius type inequalities. Methods used in the paper are standard for the operator theory inequality topics.

SUBCLASSES OF k-UNIFORMLY CONVEX AND k-STARLIKE FUNCTIONS DEFINED BY SĂLĂGEAN OPERATOR

  • Seker, Bilal;Acu, Mugur;Eker, Sevtap Sumer
    • 대한수학회보
    • /
    • 제48권1호
    • /
    • pp.169-182
    • /
    • 2011
  • The main object of this paper is to introduce and investigate new subclasses of normalized analytic functions in the open unit disc $\mathbb{U}$, which generalize the familiar class of k-starlike functions. The various properties and characteristics for functions belonging to these classes derived here include (for example) coefficient inequalities, distortion theorems involving fractional calculus, extreme points, integral operators and integral means inequalities.

WEIGHTED INTEGRAL INEQUALITIES FOR MODIFIED INTEGRAL HARDY OPERATORS

  • Chutia, Duranta;Haloi, Rajib
    • 대한수학회보
    • /
    • 제59권3호
    • /
    • pp.757-780
    • /
    • 2022
  • In this article, we study the weak and extra-weak type integral inequalities for the modified integral Hardy operators. We provide suitable conditions on the weights ω, ρ, φ and ψ to hold the following weak type modular inequality $${\mathcal{U}}^{-1}\({\int_{{\mid}{\mathcal{I}}f{\mid}>{\gamma}}}\;{\mathcal{U}}({\gamma}{\omega}){\rho}\){\leq}{\mathcal{V}}^{-1}\({\int}_{0}^{\infty}{\mathcal{V}}(C{\mid}f{\mid}{\phi}){\psi}\),$$ where ${\mathcal{I}}$ is the modified integral Hardy operators. We also obtain a necesary and sufficient condition for the following extra-weak type integral inequality $${\omega}\(\{{\left|{\mathcal{I}}f\right|}>{\gamma}\}\){\leq}{\mathcal{U}}{\circ}{\mathcal{V}}^{-1}\({\int}_{0}^{\infty}{\mathcal{V}}\(\frac{C{\mid}f{\mid}{\phi}}{{\gamma}}\){\psi}\).$$ Further, we discuss the above two inequalities for the conjugate of the modified integral Hardy operators. It will extend the existing results for the Hardy operator and its integral version.